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Random paths to stability in Danilov’s

three-sided matching model
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Abstract

We investigate three-sided matching problems where three kinds of agents, men, women, and cats are

matched. Without any restrictions on preferences of agents, a stable matching does not necessarily exist for a

three-sided matching problem. However, Danilov [2003] has proved the existence of a stable matching for any

three-sided matching problem if preference domains for men and women are restricted in a certain way. In the

present paper, we show that, starting from an arbitrary unstable matching, there exists a finite sequence of

successive blockings leading to some stable matching for a three-sided matching problem in Danilov’s model, as

Roth and Vande Vate [1990] have proved for two-sided matching problems. The result implies that a decentralized

process of successive blockings by randomly chosen blocking agents will converge to a stable matching.

1. Introduction

Two-sided matching problems have been extensively studied since they were first analyzed by Gale

and Shapley [1962]. There are two kinds of agents, men and women, and the sets of men and women

are denoted by M and W , respectively. Each agent has a strict preference relation over those of the

opposite sex. A matching µ is a partition of the set of agents M ∪W into non-empty coalitions such

that each coalition contains at most one man and at most one woman, and thus at most two agents

in total. A matching µ can be blocked by a single man or a single woman if he or she prefers being

unmatched to being matched to his or her assignment at µ. A matching µ can also be blocked by a pair

(m,w) ∈ M ×W if they prefer each other to their own assignments at µ. A matching µ is stable if it

is not blocked by any single agent or any pair of agents. Gale and Shapley [1962] proved the existence
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of a stable matching for every two-sided matching problem by presenting an algorithm for finding a

stable matching.

An extension of the research on two-sided matching problems is to investigate three-sided matching

problems. There are three kinds of agents, men, women, and cats. The sets of men, women, and cats

are denoted by M , W , and C, respectively. Each man has a strict preference relation over pairs of

a woman and a cat, and each woman and each cat also have preference relations over pairs of the

other two kinds of agents. A matching µ in this three-sided model is a partition of the set of agents

M ∪W ∪C into non-empty coalitions such that each coalition contains at most one man, at most one

woman, and at most one cat, and thus at most three agents in total. A matching µ can be blocked

by a single agent if he prefers being unmatched to being matched to his assignment at µ. Moreover,

a matching µ can be blocked by a pair (m,w) ∈ M ×W if they prefer forming a coalition of the two

without a cat to being matched to their own assignments at µ. A matching µ can be blocked by a pair

(m, c) ∈ M × C or a pair (w, c) ∈ W × C in a similar way. Finally, a matching µ can be blocked by

a triplet (m,w, c) ∈ M × W × C if they prefer forming a coalition of the three to being matched to

their own assignments at µ. A matching µ is stable if it is not blocked by any single agent, any pair of

agents, or any triplet of agents. Alkan [1988] has presented an example showing that a stable matching

does not necessarily exist for such a three-sided matching problem. However, Danilov [2003] has proved

the existence of a stable matching for any three-sided matching problem if preference domains for men

and women are restricted in the following way: Each man is interested in women in the first place and

cats interest him less while each woman is interested in men in the first place and cats interest her less.

Each cat, on the other hand, may have an arbitrary strict preference relation over pairs of a man and

a woman. Danilov [2003] has presented an algorithm for finding a stable matching for a three-sided

matching problem with these restricted preference domains.

Another extension of the research on two-sided matching problems is to investigate whether decen-

tralized decision making by each agent leads to stability. This question has been answered by Roth

and Vande Vate [1990]. They have proved that, starting from an arbitrary unstable matching, there

exists a finite sequence of successive blockings leading to some stable matching. Their result implies

that a decentralized process of successive blockings by randomly chosen blocking agents will converge

to a stable matching with probability one.

In the present paper, we investigate whether decentralized decision making by each agent leads

to stability in Danilov’s three-sided matching model. The answer is in the affirmative. As Roth

and Vande Vate [1990] have proved for two-sided matching problems, we show that, starting from
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an arbitrary unstable matching, there exists a finite sequence of successive blockings leading to some

stable matching for a three-sided matching problem in Danilov’s model. So, a decentralized process

of successive blockings will converge to a stable matching via random paths in Danilov’s three-sided

matching model.

There are studies in the literature that show decentralized decision making by each agent leads

to stability in a variety of matching models. Among others, Diamantoudi, Miyagawa, and Xue [2004]

investigate this issue in roommate problems. Kojima and Unver [2008] investigate this issue in many-

to-many matching problems. The present paper is an attempt to do the same analysis for Danilov’s

three-sided matching problems.

The remaining part of this paper is organized as follows. Section 2 explains a model of three-sided

matching and Danilov’s restricted preference domains that guarantee the existence of a stable matching.

Section 3 shows our main result. Section 4 provides some concluding remarks.

2. The Model

There are a finite number of agents of three kinds: men, women, and cats. The sets of men, women,

and cats are denoted by M , W , and C, respectively. We do not assume that |M | = |W | = |C|.

In the present paper, a coalition refers to a non-empty set of agents such that it contains at most

one man, at most one woman, and at most one cat, and thus at most three agents in total. A matching

µ in our three-sided model is a partition of M ∪ W ∪ C into coalitions. By abuse of terminology, a

coalition in the present paper also refers to an ordered list of agents, as the following examples show.

An example of a coalition at a matching is a triplet (m,w, c) ∈ M × W × C, which should be

expressed as {m,w, c} formally. By abuse of notation, we use the two expressions (m,w, c) and {m,w, c}

interchangeably in the present paper. Another example of a coalition at a matching is a pair (m,w) ∈

M × W , which should be expressed as {m,w} formally. This two-agent coalition is also denoted by

(m,w, ∗), where the element “∗” in the third argument represents “an empty seat”, meaning that there

is no cat in this coalition. Yet another example of a coalition at a matching is a single-agent coalition

w ∈ W , which should be expressed as {w} formally, and which is also denoted by (∗, w, ∗) in the present

paper. We define M̄ = M ∪{∗}, W̄ = W ∪{∗}, and C̄ = C ∪{∗}. When we write m ∈ M̄ , it is possible

that m = ∗. Similarly, when we write (w, c) ∈ W̄ × C̄, it is possible that (w, c) = (∗, ∗).

We denote by µ(i) the coalition that agent i belongs to at a matching µ. For example, given a

coalition (m,w, c) ∈ M ×W ×C or {m,w, c} at a matching µ, the coalition that m, w, and c belong to

is denoted by µ(m) = µ(w) = µ(c) = (m,w, c) or µ(m) = µ(w) = µ(c) = {m,w, c}. Given a coalition
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(m′, w′, ∗) ∈ M × W × C̄ at a matching µ′, the coalition that m′ and w′ belong to is denoted by

µ′(m′) = µ′(w′) = (m′, w′, ∗) or µ′(m′) = µ′(w′) = {m′, w′} while µ′(∗) is not defined. We say that

agent i is single at µ if µ(i) = {i}.

Each man m ∈ M has a complete, transitive, and strict preference relation �m over W̄ × C̄. When

m prefers (w, c) to (w′, c′), we write (w, c) ≻m (w′, c′), or we write (m,w, c) ≻m (m,w′, c′) by abuse of

notation. When m weakly prefers (w, c) to (w′, c′), that is, (w, c) is at least as good as (w′, c′), we write

(w, c) �m (w′, c′) or (m,w, c) �m (m,w′, c′). Similarly, each woman w ∈ W and each cat c ∈ C have

complete, transitive, and strict preference relations �w and �c over M̄ × C̄ and M̄ × W̄ , respectively.

A three-sided matching problem is specified by (M,W,C, (�i)i∈M∪W∪C).

We now define blocking coalitions for a given matching µ. A triplet (m,w, c) ∈ M × W × C is

called a blocking triplet for µ if (m,w, c) ≻i µ(i) for all i ∈ {m,w, c}. A pair (m,w) ∈ M ×W is called

a blocking pair for µ if (m,w, ∗) ≻i µ(i) for all i ∈ {m,w}. Similarly, a pair (m, c) ∈ M ×C is called a

blocking pair for µ if (m, ∗, c) ≻i µ(i) for all i ∈ {m, c} while a pair (w, c) ∈ W ×C is called a blocking

pair for µ if (∗, w, c) ≻i µ(i) for all i ∈ {w, c}. An agent m ∈ M is called a blocking single for µ if

(m, ∗, ∗) ≻m µ(m). Similarly, an agent w ∈ W is called a blocking single for µ if (∗, w, ∗) ≻w µ(w)

while an agent c ∈ C is called a blocking single for µ if (∗, ∗, c) ≻c µ(c). A blocking coalition refers to

either a blocking triplet, a blocking pair, or a blocking single.

Definition. A matching µ is individually rational if there are no blocking singles for µ.

Definition. A matching µ is stable if there are no blocking coalitions for µ.

Alkan [1988] has presented an example showing that a stable matching does not necessarily exist

for a three-sided matching problem. On the other hand, Danilov [2003] has proposed to consider the

following restrictions on preference domains for men and women in pursuit of a stable matching for a

three-sided matching problem.

Definition. (Danilov’s condition.) For each m ∈ M , if (m,w, c) ≻m (m,w′, c) for some (w,w′, c) ∈

W̄ × W̄ × C̄, then (m,w, c′) ≻m (m,w′, c′′) for all (c′, c′′) ∈ C̄ × C̄. For each w ∈ W , if (m,w, c) ≻w

(m′, w, c) for some (m,m′, c) ∈ M̄ × M̄ × C̄, then (m,w, c′) ≻w (m′, w, c′′) for all (c′, c′′) ∈ C̄ × C̄.

Under Danilov’s condition on preferences, each man is interested in women in the first place and

cats interest him less while each woman is interested in men in the first place and cats interest her
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less.1 Danilov’s condition does not impose any restrictions on preference domains of cats.

Danilov [2003] has presented an algorithm for finding a stable matching for a three-sided matching

problem with these restricted preference domains and proved the following fact.

Fact. A stable matching exists for any three-sided matching problem with strict preferences under

Danilov’s condition.

3. The Result

This section investigates whether, starting from an arbitrary unstable matching, there exists a finite

sequence of successive blockings leading to some stable matching.

We first prove the following two lemmas, in which Danilov’s condition and strict preferences play

an important role.

Lemma 1. Let µ be an arbitrary matching for any three-sided matching problem with strict pref-

erences under Danilov’s condition, which is specified by (M,W,C, (�i)i∈M∪W∪C). If (m,w, c) ∈ M ×

W × C is a blocking triplet for µ but (m,w) is not a blocking pair for µ, then (m,w) is matched at µ,

that is, µ(m) = µ(w) = (m,w, c′) for some c′ ∈ C̄.

Proof. Since (m,w) is not a blocking pair for µ, we have either µ(m) �m (m,w, ∗) or µ(w) �w

(m,w, ∗). Without loss of generality, suppose that µ(m) �m (m,w, ∗) and µ(m) = (m,w′, c′) for some

(w′, c′) ∈ W̄ × C̄.

Since (m,w, c) is a blocking triplet for µ, we have (m,w, c) ≻m (m,w′, c′). Danilov’s condition

implies that (m,w, c) �m (m,w′, c), because otherwise we have (m,w′, c′) ≻m (m,w, c).

Since µ(m) �m (m,w, ∗), we have (m,w′, c′) �m (m,w, ∗). Danilov’s condition implies that

(m,w′, c) �m (m,w, c), because otherwise we have (m,w, ∗) ≻m (m,w′, c′).

We now have (m,w, c) �m (m,w′, c) �m (m,w, c). Since preferences are strict, we conclude that

w′ = w.

Lemma 2. Let µ be an arbitrary matching for any three-sided matching problem with strict pref-

erences under Danilov’s condition, which is specified by (M,W,C, (�i)i∈M∪W∪C). Suppose that µ is

individually rational. If (m, c) ∈ M×C is a blocking pair for µ, then µ(m) = (m, ∗, c′) for some c′ ∈ C̄.

If (w, c) ∈ W × C is a blocking pair for µ, then µ(w) = (∗, w, c′) for some c′ ∈ C̄.

1Preferences under Danilov’s condition and lexicographic preferences are similar but slightly different. Under
Danilov’s condition, it is possible that a man has a preference relation such that (m,w, c) ≻m (m,w, c′) ≻m

(m,w′, c′) ≻m (m,w′, c). This preference relation is not lexicographic.
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Proof. We prove the first “if” statement. The proof of the second “if” statement is similar. Suppose

that µ(m) = (m,w′, c′) for some (w′, c′) ∈ W̄ × C̄.

Since (m, c) is a blocking pair for µ, we have (m, ∗, c) ≻m (m,w′, c′). Danilov’s condition implies

that (m, ∗, ∗) �m (m,w′, ∗), because otherwise we have (m,w′, c′) ≻m (m, ∗, c).

Since µ is individually rational, we have (m,w′, c′) �m (m, ∗, ∗). Danilov’s condition implies that

(m,w′, ∗) �m (m, ∗, ∗), because otherwise we have (m, ∗, ∗) ≻m (m,w′, c′).

We now have (m, ∗, ∗) �m (m,w′, ∗) �m (m, ∗, ∗). Since preferences are strict, we conclude that

w′ = ∗.

Suppose that a coalition (m,w, c) ∈ M̄ × W̄ × C̄ with (m,w, c) ̸= (∗, ∗, ∗) is a blocking coalition for

a matching µ. We say that another matching µ′ is obtained from µ by satisfying the blocking coalition

(m,w, c) for µ if the following three conditions hold.

(i) If i ∈ {m,w, c} and i ̸= ∗, then µ′(i) = (m,w, c).

(ii) If i ∈ M ∪W ∪ C \ {m,w, c} and i ∈ µ(j) for some j ∈ {m,w, c} with j ̸= ∗, then µ′(i) = {i}.

(iii) If i ∈ M ∪W ∪ C \ {m,w, c} and i /∈ µ(j) for any j ∈ {m,w, c} with j ̸= ∗, then µ′(i) = µ(i).

Condition (i) says that the agents in the blocking coalition for the old matching µ are matched

at the new matching µ′. Condition (ii) says that old family members of the agents in the blocking

coalition for µ become single at µ′. Condition (iii) says that agents irrelevant to the blocking coalition

for µ are matched with the same members between µ and µ′.

Theorem. Let µ1 be an arbitrary unstable matching for any three-sided matching problem with

strict preferences under Danilov’s condition, which is specified by (M,W,C, (�i)i∈M∪W∪C). There

exists a finite sequence of matchings µ1, . . . , µN such that µN is stable, and for each n = 1, . . . , N − 1,

there is a blocking coalition for µn such that µn+1 is obtained from µn by satisfying the blocking coalition.

Proof. We follow four steps.

Step 1. If µ1 is not individually rational, then we obtain µ2 from µ1 by satisfying one of the

blocking singles for µ1. By satisfying all the blocking singles for µ1 sequentially in this manner, we

obtain µk, which is individually rational.

Step 2.2 At the beginning of this step, we have an individually rational matching µk. Suppose

that there is a blocking pair (mk, wk) ∈ M × W for µk. If there is not such a man-woman blocking

2Descriptions of this step closely follow Roth and Vande Vate [1990].
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pair for µk, then we proceed to step 3.

Let us obtain µk+1 from µk by satisfying (mk, wk, ∗) and define the set A(k) = {mk, wk}. We note

that µk+1 is individually rational because old family members of mk and wk at µk have become single

at µk+1 as is described by condition (ii) in the definition of satisfaction of the blocking coalition.

Suppose that there is a blocking pair (mk+1, wk+1) ∈ M × W for µk+1. If there is not such a

man-woman blocking pair for µk+1, then we proceed to step 3. We note that {mk+1, wk+1} is not

contained in A(k), that is, {mk+1, wk+1} � A(k). Step 2 will proceed by constructing a sequence of

individually rational matchings, in such a way that it can be associated with an increasing sequence of

sets A(q) which contain no cats and no man-woman blocking pairs.

We now start the inductive step. Suppose that we have an individually rational matching µq+1, and

we have a set A(q) such that A(q) contains no cats and no man-woman blocking pairs for µq+1, and

µq+1 does not match3 any agent in A(q) to any agent not in A(q). Suppose also that there is a blocking

pair (m′, w′) ∈ M × W for µq+1. If there is not such a man-woman blocking pair for µq+1, then we

proceed to step 3. Otherwise, we have either or both of m′ /∈ A(q) and w′ /∈ A(q). In the following three

cases, we desire to show that there exists a sequence of individually rational matchings µq+1, . . . , µr+1

such that each matching in the sequence is obtained by satisfying a man-woman blocking pair, and we

also desire to show that there exists a set A(r) � A(q) such that A(r) strictly contains A(q), and A(r)

contains no cats and no man-woman blocking pairs for µr+1, and µr+1 does not match any agent in

A(r) to any agent not in A(r).

Case 1. This is the case where there is a blocking pair (m′, w′) ∈ M × W for µq+1 such that

m′ ∈ A(q) and w′ /∈ A(q).

Let wq+1 = w′, and choose a man mq+1 ∈ A(q) such that (mq+1, wq+1) is a blocking pair for µq+1,

and such that mq+1 is wq+1’s most preferred blocking partner among all the blocking partners in A(q).4

Let us obtain the next individually rational matching µq+2 from µq+1 by satisfying (mq+1, wq+1, ∗),

and define A(q+ 1) = A(q)∪ {wq+1}. Clearly, A(q+ 1) contains no cats and µq+2 does not match any

agent in A(q + 1) to any agent not in A(q + 1).

If mq+1 was single at µq+1, that is, if µq+1(mq+1) = (mq+1, ∗, ∗), then A(q + 1) contains no man-

woman blocking pairs for µq+2. If we define µr+1 = µq+2 and A(r) = A(q + 1), we obtain the desired

result.

3For each i ∈ A(q), we have µq+1(i) ⊆ A(q).
4That is, mq+1 ∈ A(q) is a man such that (mq+1, wq+1) is a blocking pair for µq+1 and

(mq+1, wq+1, ∗) �wq+1 (m,wq+1, ∗) for all m ∈ {m ∈ A(q) : (m,wq+1) is a blocking pair for µq+1}.
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If mq+1 was matched to some woman (let us call her wq+2) at µq+1, that is, if µq+1(mq+1) =

(mq+1, wq+2, ∗), then it must be the case that wq+2 ∈ A(q + 1) and wq+2 has become single at µq+2.

In this situation, wq+2 and some man m′′ ∈ A(q+1) may form a blocking pair (m′′, wq+2) for µq+2, in

which case we choose a man mq+2 ∈ A(q + 1) such that (mq+2, wq+2) is a blocking pair for µq+2, and

such that mq+2 is wq+2’s most preferred blocking partner among all the blocking partners in A(q+1).

Let us obtain the next individually rational matching µq+3 from µq+2 by satisfying (mq+2, wq+2, ∗).

We repeat this process of satisfying a blocking pair in A(q + 1), which will stop in finite times since in

each time no man gets worse than before and hence no blocking pair appears twice for the sequence

µq+2, µq+3, . . .. Eventually, we obtain an individually rational matching µr+1 such that A(q+1) contains

no man-woman blocking pairs for µr+1. If we define A(r) = A(q + 1), we obtain the desired result.

Case 2. This is the case where there is a blocking pair (m′, w′) ∈ M × W for µq+1 such that

m′ /∈ A(q) and w′ ∈ A(q). By repeating a similar argument as in case 1 with the roles of men and

women reversed, we obtain the desired result.

Case 3. This is the case where cases 1 and 2 do not apply but there is a blocking pair (m′, w′) ∈

M ×W for µq+1 such that m′ /∈ A(q) and w′ /∈ A(q).

Obtain an individually rational matching µq+2 from µq+1 by satisfying (m′, w′, ∗), and define A(q+

1) = A(q)∪{m′, w′}. Clearly, A(q+1) contains no cats and µq+2 does not match any agent in A(q+1)

to any agent not in A(q + 1). Furthermore, A(q + 1) contains no man-woman blocking pairs for µq+2.

If we define µr+1 = µq+2 and A(r) = A(q + 1), we obtain the desired result.

The above arguments complete the proof of the inductive step. When we repeat the inductive step,

the cardinality of A(q) strictly increases in each step, but it cannot be greater than the cardinality of

M ∪W . So, we must eventually reach an individually rational matching µq+1 for which there are no

man-woman blocking pairs. We then proceed to step 3.

Step 3. At the beginning of this step, we have an individually rational matching for which there

are no man-woman blocking pairs. Let us call this matching µℓ.

Suppose that there is a blocking coalition (mℓ, wℓ, cℓ) ∈ M̄ × W̄ ×C for µℓ.
5 That is, the blocking

coalition is containing a cat and it is either a blocking triplet, a man-cat blocking pair, or a woman-cat

blocking pair. If there is not such a blocking coalition for µℓ, then we proceed to step 4.

5Since µℓ is individually rational, it cannot be the case that (mℓ, wℓ) = (∗, ∗).
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Since µℓ is an individually rational matching for which there are no man-woman blocking pairs,

Lemmas 1 and 2 imply that (mℓ, wℓ) is matched at µℓ. That is, there exists c′ ∈ C̄ such that µℓ(i) =

(mℓ, wℓ, c
′) for all i ∈ {mℓ, wℓ} \ {∗}.

Let us obtain an individually rational matching µℓ+1 from µℓ by satisfying (mℓ, wℓ, cℓ). If µℓ(cℓ) =

(m̂, ŵ, cℓ) for some (m̂, ŵ) ∈ M ×W , then m̂ and ŵ have become single at µℓ+1. Since m̂ and ŵ were

previously matched at an individually rational matching µℓ, this man-woman pair (m̂, ŵ) is a blocking

pair for µℓ+1.
6 Let us obtain the next individually rational matching µℓ+2 from µℓ+1 by satisfying

(m̂, ŵ, ∗). If µℓ+2 can be obtained in this manner, then we define µL+1 = µℓ+2. Otherwise, we define

µL+1 = µℓ+1. Moreover, define the set B(L) = {mℓ, wℓ, cℓ}\{∗}.7 Note that, since all the combinations

of a man and a woman are the same between µℓ and µL+1,
8 there are no man-woman blocking pairs

for µL+1.
9

Suppose that there is a blocking coalition (mL+1, wL+1, cL+1) ∈ M̄ × W̄ × C for µL+1. If there is

not such a blocking coalition for µL+1, then we proceed to step 4. We note that {mL+1, wL+1, cL+1}

is not contained in B(L), that is, {mL+1, wL+1, cL+1} � B(L). Step 3 will proceed by constructing a

sequence of individually rational matchings for which there are no man-woman blocking pairs, in such

a way that it can be associated with an increasing sequence of sets B(s) which contain no blocking

coalitions.

We now start the inductive step. Suppose that we have an individually rational matching µs+1

for which there are no man-woman blocking pairs, and we have a set B(s) such that B(s) contains no

blocking coalitions for µs+1, and µs+1 does not match any agent in B(s) to any agent not in B(s).

Suppose also that there is a blocking coalition (m′, w′, c′) ∈ M̄ × W̄ × C for µs+1. If there is not

such a blocking coalition for µs+1, then we proceed to step 4. Otherwise, we have either or both of

{m′, w′} � B(s) ∪ {∗} and c′ /∈ B(s); Here, we treat (m′, w′) as a single unit because Lemmas 1 and 2

imply that (m′, w′) is matched at µs+1. In the following three cases, we desire to show that there exists

a sequence of individually rational matchings µs+1, . . . , µt+1 such that each matching in the sequence

is obtained by satisfying a blocking coalition and there are no man-woman blocking pairs for µt+1. We

also desire to show that there exists a set B(t) � B(s) such that B(t) strictly contains B(s), and B(t)

contains no blocking coalitions for µt+1, and µt+1 does not match any agent in B(t) to any agent not

in B(t).

6See Appendix for a proof of the statement.
7We carefully define B(L) so that “∗” should not be an element of B(L).
8That is, for each i ∈ M ∪W , we have µℓ(i) \ C = µL+1(i) \ C.
9See Appendix for a proof of the statement.
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Case 1. This is the case where there is a blocking coalition (m′, w′, c′) ∈ M̄ ×W̄ ×C for µs+1 such

that {m′, w′} ⊆ B(s) ∪ {∗} and c′ /∈ B(s).

Let cs+1 = c′, and choose {ms+1, ws+1} ⊆ B(s) ∪ {∗} such that (ms+1, ws+1, cs+1) is a blocking

coalition for µs+1, and such that (ms+1, ws+1) is cs+1’s most preferred blocking partner(s) among all

the blocking partners in B(s).10 Lemmas 1 and 2 imply that (ms+1, ws+1) is matched at µs+1. Let

us obtain the next individually rational matching µs+2 from µs+1 by satisfying (ms+1, ws+1, cs+1). If

µs+1(cs+1) = (m̂, ŵ, cs+1) for some (m̂, ŵ) ∈ M ×W , then m̂ and ŵ have become single at µs+2. Since

m̂ and ŵ were previously matched at an individually rational matching µs+1, this man-woman pair

(m̂, ŵ) is a blocking pair for µs+2. Let us obtain the next individually rational matching µs+3 from

µs+2 by satisfying (m̂, ŵ, ∗). If µs+3 can be obtained in this manner, then we define µS+2 = µs+3.

Otherwise, we define µS+2 = µs+2. Moreover, define the set B(S + 1) = B(s) ∪ {cs+1}. Clearly,

µS+2 does not match any agent in B(S + 1) to any agent not in B(S + 1). Note that, since all the

combinations of a man and a woman are the same between µs+1 and µS+2, there are no man-woman

blocking pairs for µS+2.

If (ms+1, ws+1) was not matched to a cat at µs+1, that is, if µs+1(i) = (ms+1, ws+1, ∗) for all

i ∈ {ms+1, ws+1}\{∗}, then B(S+1) contains no blocking coalitions for µS+2. If we define µt+1 = µS+2

and B(t) = B(S + 1), we obtain the desired result.

If (ms+1, ws+1) was matched to some cat (let us call it cS+2) at µs+1, that is, if µs+1(i) =

(ms+1, ws+1, cS+2) for all i ∈ {ms+1, ws+1} \ {∗}, then it must be the case that cS+2 ∈ B(S + 1) and

cS+2 has become single at µS+2. In this situation, cS+2 and some {m′′, w′′} ⊆ B(S+1)∪{∗} may form

a blocking coalition (m′′, w′′, cS+2) for µS+2, in which case we choose {mS+2, wS+2} ⊆ B(S + 1) ∪ {∗}

such that (mS+2, wS+2, cS+2) is a blocking coalition for µS+2, and such that (mS+2, wS+2) is cS+2’s

most preferred blocking partner(s) among all the blocking partners in B(S + 1). Lemmas 1 and 2

imply that (mS+2, wS+2) is matched at µS+2. Let us obtain the next individually rational matching

µS+3 from µS+2 by satisfying (mS+2, wS+2, cS+2). Note that there are no man-woman blocking pairs

for µS+3 because all the combinations of a man and a woman are the same between µS+2 and µS+3.

We repeat this process, which will stop in finite times since in each time no man as well as no woman

gets worse than before and hence no blocking coalition appears twice for the sequence µS+2, µS+3, . . ..

Eventually, we obtain an individually rational matching µt+1 such that there are no man-woman block-

ing pairs for µt+1 and B(S +1) contains no blocking coalitions for µt+1. If we define B(t) = B(S +1),

10That is, {ms+1, ws+1} ⊆ B(s) ∪ {∗} is such that (ms+1, ws+1, cs+1) is a blocking coalition
for µs+1 and (ms+1, ws+1, cs+1) �cs+1 (m,w, cs+1) for all (m,w) ∈ {(m,w) : {m,w} ⊆ B(s) ∪
{∗} and (m,w, cs+1) is a blocking coalition for µs+1}.
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we obtain the desired result.

Case 2. This is the case where there is a blocking coalition (m′, w′, c′) ∈ M̄ ×W̄ ×C for µs+1 such

that {m′, w′} � B(s) ∪ {∗} and c′ ∈ B(s).

Since µs+1 is individually rational, it cannot be the case that (m′, w′) = (∗, ∗). Without loss of

generality, suppose that m′ /∈ B(s) ∪ {∗}.

Let (ms+1, ws+1) = (m′, w′), and choose cs+1 ∈ B(s) such that (ms+1, ws+1, cs+1) is a blocking

coalition for µs+1, and such that cs+1 is ms+1’s most preferred blocking cat partner among all the

blocking cat partners in B(s).11 Lemmas 1 and 2 imply that (ms+1, ws+1) is matched at µs+1. Let

us obtain the next individually rational matching µs+2 from µs+1 by satisfying (ms+1, ws+1, cs+1).

If µs+1(cs+1) = (m̂, ŵ, cs+1) for some (m̂, ŵ) ∈ M × W , then both m̂ ∈ B(s) and ŵ ∈ B(s) have

become single at µs+2. Since m̂ and ŵ were previously matched at an individually rational matching

µs+1, this man-woman pair (m̂, ŵ) is a blocking pair for µs+2. Let us obtain the next individually

rational matching µs+3 from µs+2 by satisfying (m̂, ŵ, ∗). If µs+3 can be obtained in this manner, then

we define µS+2 = µs+3. Otherwise, we define µS+2 = µs+2. Moreover, define the set B(S + 1) =

B(s) ∪ {ms+1, ws+1} \ {∗}. Clearly, µS+2 does not match any agent in B(S + 1) to any agent not in

B(S+1). Note that, since all the combinations of a man and a woman are the same between µs+1 and

µS+2, there are no man-woman blocking pairs for µS+2.

If cs+1 was single at µs+1, that is, if µs+1(cs+1) = (∗, ∗, cs+1), then B(S + 1) contains no blocking

coalitions for µS+2. If we define µt+1 = µS+2 and B(t) = B(S + 1), we obtain the desired result.

If cs+1 was not single at µs+1, then µs+1(cs+1) = (mS+2, wS+2, cs+1) for some (mS+2, wS+2) ∈

M̄ × W̄ with (mS+2, wS+2) ̸= (∗, ∗). Without loss of generality, suppose that mS+2 ̸= ∗. It must be

the case that {mS+2, wS+2} ⊆ B(S + 1) ∪ {∗} and µS+2(mS+2) = (mS+2, wS+2, ∗). In this situation,

(mS+2, wS+2) and some c′′ ∈ B(S + 1) may form a blocking coalition (mS+2, wS+2, c
′′) for µS+2, in

which case we choose cS+2 ∈ B(S + 1) such that (mS+2, wS+2, cS+2) is a blocking coalition for µS+2,

and such that cS+2 is mS+2’s most preferred blocking cat partner among all the blocking cat partners

in B(S + 1). Let us obtain the next individually rational matching µS+3 from µS+2 by satisfying

(mS+2, wS+2, cS+2). If µS+2(cS+2) = (m̂, ŵ, cS+2) for some (m̂, ŵ) ∈ M ×W , then both m̂ ∈ B(S +1)

and ŵ ∈ B(S + 1) have become single at µS+3. Since m̂ and ŵ were previously matched at an

individually rational matching µS+2, this man-woman pair (m̂, ŵ) is a blocking pair for µS+3. Let us

obtain the next individually rational matching µS+4 from µS+3 by satisfying (m̂, ŵ, ∗). If µS+4 can

11cs+1 ∈ B(s) is such that (ms+1, ws+1, cs+1) is a blocking coalition for µs+1 and (ms+1, ws+1, cs+1) �ms+1

(ms+1, ws+1, c) for all c ∈ {c ∈ B(s) : (ms+1, ws+1, c) is a blocking coalition for µs+1}.
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be obtained in this manner, then we define µS+3 = µS+4. Otherwise, we define µS+3 = µS+3. Note

that there are no man-woman blocking pairs for µS+3 because all the combinations of a man and a

woman are the same between µS+2 and µS+3. We repeat this process of satisfying a blocking coalition

in B(S+1) while keeping the combinations of a man and a woman unchanged, which will stop in finite

times since in each time no cat gets worse than before and hence no blocking coalition appears twice

for the sequence µS+2, µS+3, . . .. Eventually, we obtain an individually rational matching µt+1 such

that there are no man-woman blocking pairs for µt+1 and B(S + 1) contains no blocking coalitions for

µt+1. If we define B(t) = B(S + 1), we obtain the desired result.

Case 3. This is the case where cases 1 and 2 do not apply but there is a blocking coalition

(m′, w′, c′) ∈ M̄ × W̄ × C for µs+1 such that {m′, w′} � B(s) ∪ {∗} and c′ /∈ B(s).

Lemmas 1 and 2 imply that (m′, w′) is matched at µs+1. Let us obtain the next individually rational

matching µs+2 from µs+1 by satisfying (m′, w′, c′). If µs+1(c
′) = (m̂, ŵ, c′) for some (m̂, ŵ) ∈ M ×W ,

then m̂ and ŵ have become single at µs+2. Since m̂ and ŵ were previously matched at an individually

rational matching µs+1, this man-woman pair (m̂, ŵ) is a blocking pair for µs+2. Let us obtain the

next individually rational matching µs+3 from µs+2 by satisfying (m̂, ŵ, ∗). If µs+3 can be obtained in

this manner, then we define µS+2 = µs+3. Otherwise, we define µS+2 = µs+2. Moreover, define the set

B(S+1) = B(s)∪ {m′, w′, c′} \ {∗}. Clearly, µS+2 does not match any agent in B(S+1) to any agent

not in B(S + 1). Note that, since all the combinations of a man and a woman are the same between

µs+1 and µS+2, there are no man-woman blocking pairs for µS+2. Furthermore, B(S + 1) contains no

blocking coalitions for µS+2. If we define µt+1 = µS+2 and B(t) = B(S + 1), we obtain the desired

result.

The above arguments complete the proof of the inductive step. When we repeat the inductive step,

the cardinality of B(s) strictly increases in each step, but it cannot be greater than the cardinality

of M ∪W ∪ C. So, we must eventually reach an individually rational matching µs+1 for which there

are no man-woman blocking pairs and there are no blocking coalitions containing a cat in the form of

(m′, w′, c′) ∈ M̄ × W̄ × C. We then proceed to step 4.

Step 4. Denote by µN the matching that we have at the beginning of this step.

This matching µN is stable because it is individually rational, it is not blocked by any man-woman

pair, and it is not blocked by any coalition containing a cat. This fact completes the proof of the

theorem.

12



－ 113 －

Random paths to stability in danilov's three-sided matching model

Finally, we state the following corollary as Roth and Vande Vate [1990] have established for two-

sided matching problems.

Corollary. Let µ1 be an arbitrary unstable matching for any three-sided matching problem with

strict preferences under Danilov’s condition. Consider a random sequence R(µ1) = (µ1, µ2, . . .) where

each µn+1 is obtained from µn by satisfying a blocking coalition that is chosen at random from the

blocking coalitions for µn. If the probability that each blocking coalition for µn will be chosen is positive

and bounded away from zero, then R(µ1) converges to a stable matching with probability one.

4. Conclusion

In the present paper, we have proved that, in Danilov’s three-sided matching model, there exists a

finite sequence of successive blockings from an arbitrary unstable matching to some stable matching.

Our result is an extension of the result by Roth and Vande Vate [1990] for a two-sided matching model

to a three-sided matching model.

Danilov’s condition and strict preferences have played an important role to obtain our result. It

would be desirable if we can drop these assumptions on preferences and still obtain the same result. Of

course, a stable matching does not necessarily exist in three-sided matching problems without Danilov’s

condition. However, it might be possible to prove the existence of random paths to stability in three-

sided matching problems for which there exists a stable matching, as Diamantoudi, Miyagawa, and

Xue [2004] have proved for roommate problems for which there exists a stable matching. This is an

area for our future research.

Appendix

Proof of the statement with footnote 6. If (m̂, ŵ) is not a blocking pair for µℓ+1, then we have either

(m̂, ∗, ∗) �m̂ (m̂, ŵ, ∗) or (∗, ŵ, ∗) �ŵ (m̂, ŵ, ∗). Strict preferences and Danilov’s condition imply that we have

either (m̂, ∗, ∗) ≻m̂ (m̂, ŵ, cℓ) or (∗, ŵ, ∗) ≻ŵ (m̂, ŵ, cℓ), which is in contradiction with individual rationality of

µℓ.

Proof of the statement with footnote 9. Suppose, by way of contradiction, that (m,w) ∈ M×W is a blocking

pair for µL+1, that is, (m,w, ∗) ≻m µL+1(m) ≡ (m,w′, c′) and (m,w, ∗) ≻w µL+1(w) ≡ (m′′, w, c′′). Since all

the combinations of a man and a woman are the same between µℓ and µL+1, we may write µℓ(m) ≡ (m,w′, c̀)

and µℓ(w) ≡ (m′′, w, ć).

If w ̸= w′, then we have m ̸= m′′. In this case, strict preferences and Danilov’s condition imply that

(m,w, ∗) ≻m (m,w′, ∗) and (m,w, ∗) ≻w (m′′, w, ∗). Then, Danilov’s condition again implies that (m,w, ∗) ≻m

13



－ 114 －

(m,w′, c̀) and (m,w, ∗) ≻w (m′′, w, ć), which is in contradiction with the fact that µℓ is a matching for which

there are no man-woman blocking pairs.

If w = w′, then we have m = m′′, and hence we may write µL+1(m) = µL+1(w) ≡ (m,w, c′) and

µℓ(m) = µℓ(w) ≡ (m,w, c̀). Since µℓ is a matching for which there are no man-woman blocking pairs, it

must be the case that c′ ̸= c̀. By the construction of µL+1, we have either (m,w) = (mℓ, wℓ) or (m,w) =

(m̂, ŵ). If (m,w) = (mℓ, wℓ), then we must have (mℓ, wℓ, ∗) ≻mℓ µL+1(mℓ) ≻mℓ µℓ(mℓ) and (mℓ, wℓ, ∗) ≻wℓ

µL+1(wℓ) ≻wℓ µℓ(wℓ), which is in contradiction with the fact that µℓ is a matching for which there are no

man-woman blocking pairs. If (m,w) = (m̂, ŵ), then we must have (m̂, ŵ, ∗) ≻m̂ µL+1(m̂) = (m̂, ŵ, ∗), which

is a clear contradiction.
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