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Implementation of the ordinal Shapley value for

an economy with three or more agents

Yusuke Samejima

Abstract

Perez-Castrillo and Wettstein [2004, 2006] have proposed the ordinal Shapley value, a solution concept for pure

exchange economies where utility transfers may be impossible. We propose a game form that fully implements

the ordinal Shapley value in subgame-perfect equilibrium. Our game form differs from the one proposed by

Perez-Castrillo and Wettstein [2005] in that our game form works for economies with three or more agents while

their game form works for economies with three or less agents.

1. Introduction

The ordinal Shapley value is a normative solution concept for pure exchange economies where utility

transfers may be impossible. The solution concept was proposed by Perez-Castrillo andWettstein [2004].1

It is an ordinal solution concept for NTU (non-transferable utility) environments while the Shapley value

introduced by Shapley [1953] is a solution concept for TU games. The ordinal Shapley value and the

Shapley value share desirable properties such as efficiency, consistency, and fairness as discussed in

Perez-Castrillo and Wettstein [2004].

Implementation theory aims to develop a tool for the uninformed social planner who wishes to realize

certain desirable allocations. When the social planner, or the society, attempts to realize desirable

allocations, he must collect information on the preferences of members in the society. However, it is

often the case that the social planner has difficulty in collecting such information while the concerned

members share much information on each other. For such circumstances, a game form, also called a

1The working paper by Perez-Castrillo and Wettstein [2004] was eventually published in a journal as Perez-
Castrillo and Wettstein [2006]. However, proofs of some important results are found only in Perez-Castrillo and
Wettstein [2004].
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mechanism, can be used as a tool for the social planner. The game form itself is defined independently

of the preferences of members in the society. As the literature on implementation theory has proposed,

properly designed game forms can realize desirable allocations in equilibrium of the games even if the

social planner is given an insufficient amount of information.

In the literature, Perez-Castrillo and Wettstein [2005] have proposed a simple game form that

implements the ordinal Shapley value in subgame-perfect equilibrium. However, applicability of their

game form is limited in the sense that their game form works for economies with three or less agents.2

In the present paper, we also propose a game form that fully implements the ordinal Shapley value in

subgame-perfect equilibrium. However, our game form differs from the one proposed by Perez-Castrillo

and Wettstein [2005] in that our game form works for economies with three or more agents. On the

other hand, our game form as well as their game form is designed so that every equilibrium allocation

possesses properties such as efficiency, consistency, and fairness as the ordinal Shapley value does.

In the field of implementation theory, Moore and Repullo [1988] have developed a canonical game

form for subgame-perfect implementation of a social choice correspondence in general environments

with three or more agents. They present a sufficient condition, called the condition C+, for achieving

implementation with their canonical game form. The condition C+ contains the existence of a finite

sequence of allocations satisfying certain preference relations. Unfortunately, it is not immediately

clear whether such a sequence exists for the ordinal Shapley value, and hence it is not clear whether

the ordinal Shapley value can be implemented by their canonical game form. So, we consider that it is

worthwhile to design a new game form specifically for the ordinal Shapley value.

The remaining part of this paper is organized as follows. Section 2 explains a model of pure exchange

economies where the ordinal Shapley value is defined, and introduces the notion of implementation.

Section 3 proposes a game form that implements the ordinal Shapley value in subgame-perfect equilib-

rium. Section 4 provides some concluding remarks.

2. The Model

Let N = {1, 2, . . . , n} be a set of agents with at least three members (n ≥ 3). A coalition is a non-

empty subset of N , and it is typically denoted by S. We consider a pure exchange economy with ℓ ≥ 2

commodities. Agent i’s initial endowment bundle is ωi ∈ Rℓ, where R is the set of real numbers. An

endowment profile of a coalition S is denoted by ωS ≡ (ωi)i∈S . Agent i’s consumption bundle and

2Perez-Castrillo and Wettstein [2005] have pointed out that the difficulty for their mechanism to work for
three or more agents is due to the transfer paradox as discussed in Safra [1984].
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coalition S’s consumption profile are denoted by xi ∈ Rℓ and xS ≡ (xi)i∈S , respectively.
3

We assume that each agent i has a continuous and monotone4 preference relation Ri defined over

Rℓ. As usual, xiRiyi means that xi is at least as good as yi for agent i. The associated strict preference

relation and indifference relation are denoted by Pi and Ii, respectively. That is, xi Pi yi means that

agent i prefers xi to yi and xi Ii yi means that agent i is indifferent between xi and yi. Let Ri be the set

of admissible preferences of agent i. A preference profile of a coalition S is denoted by RS ≡ (Ri)i∈S

and the set of admissible preference profiles of a coalition S is denoted by RS ≡ ×i∈SRi.

The set of feasible allocations for a coalition S with ωS is denoted by

XS(ωS) ≡ {xS ∈ Rℓ|S| :
∑
i∈S

xi ≤
∑
i∈S

ωi}.

A feasible allocation xS ∈ XS(ωS) is efficient for a coalition S with RS and ωS if there is no other

feasible allocation yS ∈ XS(ωS) such that yi Ri xi for all i ∈ S and yj Pj xj for some j ∈ S.

Perez-Castrillo and Wettstein [2004] have proposed a solution concept called the ordinal Shapley

value for pure exchange economies described above. To define the ordinal Shapley value, we use the

base bundle denoted by e ≡ (1, . . . , 1) ∈ Rℓ.

Definition. The ordinal Shapley value of an economy of a coalition S with RS and ωS is a set-

valued function φ(RS , ωS) ⊂ XS(ωS), which is defined recursively as follows.

(|S| = 1) In the case of an economy with one agent i ∈ S = {i}, the ordinal Shapley value is his

endowment bundle, i.e., φ(Ri, ωi) = {ωi}.

For |S| ≥ 2, suppose that φ has been defined for any economy with (|S| − 1) or less agents.

(|S| ≥ 2) In this case, the ordinal Shapley value is the set of efficient allocations for S with RS

and ωS such that for each xS in the ordinal Shapley value, there exists an |S|-tuple of concession

vectors, (ci)i∈S with ci ≡ (cij)j∈S\{i} ∈ R|S|−1 for each i ∈ S, and the vectors satisfy the following two

properties.

(Consistency) For each i ∈ S, there exists x′
S\{i} ∈ φ(RS\{i}, (ωj + cije)j∈S\{i}) such that xj Ij x

′
j

for all j ∈ S \ {i}.

(Fairness)
∑

j∈S\{i} c
i
j =

∑
j∈S\{i} c

j
i for all i ∈ S.

3We note that each agent’s consumption space is not restricted to the non-negative orthant. We have followed
Perez-Castrillo and Wettstein [2004].

4The preference relation Ri is monotone on Rℓ if xi ≫ yi then xi Pi yi.
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Perez-Castrillo and Wettstein [2004] have proved the following important facts. Fact 1 and Fact 2

are their Theorem 2, and Fact 3 follows from their Lemma 1.

Fact 1. The ordinal Shapley value φ(RS , ωS) is non-empty for all RS ∈ RS and ωS ∈ Rℓ|S|.

Fact 2. The ordinal Shapley value satisfies individual rationality. That is, for each xS ∈ φ(RS , ωS),

it is the case that xi Ri ωi for all i ∈ S.

Fact 3. For each xS ∈ φ(RS , ωS) with |S| ≥ 2, the associated |S|-tuple of concession vectors (ci)i∈S

that appear in the definition of the ordinal Shapley value is unique.

Given RN , ωN , and xN ∈ φ(RN , ωN ), we can construct a sequence Q(RN , ωN , xN ) of lists

Q(RN , ωN , xN ) ≡ [ S(t) , ωS(t)(t) ≡ (ωi(t))i∈S(t) , xS(t)(t) ≡ (xi(t))i∈S(t) ]t=1,2,...,n

as follows.

(Step 1) Let S(1) = N , ωS(1)(1) = ωN , and xS(1)(1) = xN .

(Step t) For t = 2, . . . , n, define the list as follows.

(Step t–1) Since xS(t−1)(t − 1) ∈ φ(RS(t−1), ωS(t−1)) and since we have Fact 3, there exists a

unique |S(t − 1)|-tuple of concession vectors (ci(t))i∈S(t−1) that satisfy consistency and

fairness in the definition of the ordinal Shapley value.

(Step t–2) Choose S(t) such that S(t) ⊂ S(t− 1) and |S(t)| = |S(t− 1)| − 1.

(Step t–3) Given i ∈ S(t − 1) \ S(t) and ci(t) ≡ (cij(t))j∈S(t), we can define ωS(t)(t) so that for

all j ∈ S(t), it is the case that ωj(t) = ωj(t− 1) + cij(t)e.

(Step t–4) By the consistency of (ci(t))i∈S(t−1), we can choose xS(t)(t) ∈ φ(RS(t), ωS(t)(t)) such

that xj(t− 1) Ij xj(t) for all j ∈ S(t). Note that xj Ij xj(t) for all j ∈ S(t).5

The set of sequences that can be constructed as above is denote by Q(RN , ωN , xN ).

We consider an extensive game form as studied in Moore and Repullo [1988]. In the present paper,

we define a game form that works for any given endowment profile ωN of all agents. The game form

Γ(ωN ) consists of a game tree with a set of message choices available to agents at each information set,

and an outcome function.

Agent i’s strategy mi is a function that associates agent i’s message choice from available choices

with each information set for which he is on the move. We do not consider mixed strategies in the

5We have xj Ij xj(t) since xj = xj(1) Ij xj(2) · · ·xj(t− 1) Ij xj(t).
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present paper. The set of agent i’s strategies is also called agent i’smessage space and denoted byMi. A

strategy profile is denoted by mN ≡ (mi)i∈N . The set of strategy profiles is denoted by MN ≡ ×i∈NMi.

Given a strategy profilemN , we can associate withmN a terminal node, where an outcome allocation

is realized. So, we can define an outcome function g : MN → XN (ωN ) that associates with each strategy

profile a feasible allocation for N with ωN .

A list (Γ(ωN ), RN ) defines an extensive game. Agent i’s strategy mi is a best response to a strategy

profile mN\{i} of the other agents if g(mN ) Ri g(m
′
i,mN\{i}) for all m′

i ∈ Mi. A strategy profile mN

is a Nash equilibrium of (Γ(ωN ), RN ) if each agent chooses a best response to a strategy profile of the

others at mN ; That is, for all i ∈ N , it is the case that g(mN ) Ri g(m
′
i,mN\{i}) for all m′

i ∈ Mi.

At Nash equilibria, no agent can gain by changing his strategy while the others keep their strategies

unchanged. A strategy profile mN is a subgame-perfect equilibrium of (Γ(ωN ), RN ) if in every subgame

of (Γ(ωN ), RN ), the strategy profile induced by mN is a Nash equilibrium. Let SPE (Γ(ωN ), RN ) be

the set of subgame-perfect equilibrium allocations corresponding to the subgame-perfect equilibria of

the game (Γ(ωN ), RN ).6

We say that a game form Γ(ωN ) implements the ordinal Shapley value φ in subgame-perfect equi-

librium if for any given endowment profile ωN ∈ Rℓn, it is the case that SPE (Γ(ωN ), RN ) = φ(RN , ωN )

for all RN ∈ RN . This notion of implementation is called full implementation in the literature.

3. The Result

3–1. The game form

This section describes a game form that implements the ordinal Shapley value in subgame-perfect

equilibrium. Choose any arbitrary endowment profile ωN ∈ Rℓn and fix it throughout this section.

Formally, the game form Γ(ωN ) is defined as follows.

The game form Γ(ωN).

The game form Γ(ωN ) consists of a game tree with message spaces MN and an outcome function

g. The following descriptions define the game form Γ(ωN ).

Stage 1. This is a simultaneous-move stage. Each agent i ∈ N announces

(Ri
N , xi

N , zi, ti, ji, εi) ∈ RN ×XN (ωN )× N0 ×N ×N × R>0

6That is, SPE(Γ(ωN ), RN ) ≡ {xN ∈ XN (ωN ) : xN = g(mN ) for some subgame-perfect equilibrium mN of
the game (Γ(ωN ), RN )}.
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where N0 denotes the set of non-negative integers, R>0 denotes the set of strictly positive real numbers,

and it is required that xi
N ∈ φ(Ri

N , ωN ). In addition, each agent i ∈ N also announces simultaneously

a sequence

Qi(Ri
N , ωN , xi

N ) ≡ [ Si(t) , ωi
Si(t)(t) , xi

Si(t)(t) ]t=1,2,...,n ∈ Q(Ri
N , ωN , xi

N )

together with a feasible allocation for the coalition Si(ti) with ωi
Si(ti)(t

i)

yi
Si(ti) ∈ XSi(ti)(ω

i
Si(ti)(t

i)).

Case 1. If (Ri
N , xi

N , zi) = (R̄N , x̄N , 0) for all i ∈ N and for some (R̄N , x̄N ), then the play stops.

This is the case where all agents have announced the same (Ri
N , xi

N , zi). At this terminal node, the

outcome allocation is x̄N .

Case 2. This is the case where there exists i∗ ∈ N such that (Ri
N , xi

N , zi) = (R̄N , x̄N , 0) ̸=

(Ri∗
N , xi∗

N , zi
∗
) for all i ∈ N \ {i∗} and for some (R̄N , x̄N ). This case is divided into the following

subcases.

Subcase 2–1. If case 2 applies and (Ri∗
N , xi∗

N , zi
∗
) = (R̄N , x̄N , 1) and i∗ /∈ Si∗(ti

∗
) and ji

∗
∈

Si∗(ti
∗
), then the play proceeds to stage 2–1.

Subcase 2–2. If case 2 applies and (Ri∗
N , xi∗

N , zi
∗
) = (R̄N , x̄N , 2) and i∗ ∈ Si∗(ti

∗
), then the play

proceeds to stage 2–2.

Subcase 2–3. If case 2 applies and (Ri∗
N , xi∗

N , zi
∗
) = (R̄N , x̄N , 3) and i∗ ∈ Si∗(ti

∗
), then the play

stops. At this terminal node, the outcome allocation xN is constructed as follows. For agent i∗, the

outcome is such that xi∗ = xi∗
i∗(t

i∗).7 Let agent k ∈ N \ {i∗} be the agent with the least index number

among those other than agent i∗. For each i ∈ N \{i∗, k}, the outcome is such that xi = (0, . . . , 0) ∈ Rℓ.

For agent k, the outcome is such that xk =
∑

i∈N ωi −
∑

i∈N\{k} xi.

Subcase 2–4. If case 2 applies but none of the above three subcases applies, then the play stops.

At this terminal node, the outcome allocation is x̄N .

7A consumption bundle xi∗
i∗ (t

i∗ ) is a part of a consumption profile xi∗

Si∗ (ti
∗
)
(ti

∗
) that appears in the sequence

Qi∗ (Ri∗
N , ωN , xi∗

N ).
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Case 3. If neither case 1 nor 2 applies, then the play stops. At this terminal node, the outcome

allocation xN is constructed as follows. Let agent k be the agent with the least index number among

those who have announced the largest integer zk ∈ N0 among all agents in stage 1. That is, k ≡

min{i ∈ N : i ∈ argmaxj∈N zj}. For agent k, the outcome is such that xk = ωk + (n− 1)zke. For each

i ∈ N \ {k}, the outcome is such that xi = ωi − zke.

Stage 2–1. This stage is reached when subcase 2–1 applies in stage 1. In this stage, agent

ji
∗
∈ Si∗(ti

∗
) announces a ∈ {0, 1}, and the play stops. Let agent k ∈ N \ {i∗, ji

∗
} be the agent with

the least index number among those other than agents i∗ and ji
∗
.

If a = 0, then the outcome allocation xN at this terminal node is constructed as follows. For

agent ji
∗
, the outcome is such that xji

∗ = xi∗

ji
∗ (ti

∗
) + εi

∗
e. For agent i∗, the outcome is such that

xi∗ = x̄i∗ − εi
∗
e. If N \ {i∗, ji

∗
, k} is non-empty, then for each i ∈ N \ {i∗, ji

∗
, k}, the outcome is such

that xi = (0, . . . , 0) ∈ Rℓ. For agent k, the outcome is such that xk =
∑

i∈N ωi −
∑

i∈N\{k} xi.

If a = 1, then the outcome allocation xN at this terminal node is constructed as follows. For

agent ji
∗
, the outcome is such that xji

∗ = x̄ji
∗ . For agent i∗, the outcome is such that xi∗ =

x̄i∗ + εi
∗
e. If N \ {i∗, ji

∗
, k} is non-empty, then for each i ∈ N \ {i∗, ji

∗
, k}, the outcome is such that

xi = (0, . . . , 0) ∈ Rℓ. For agent k, the outcome is such that xk =
∑

i∈N ωi −
∑

i∈N\{k} xi.

Stage 2–2. This stage is reached when subcase 2–2 applies in stage 1. Stage 2–2 consists of

|Si∗(ti
∗
)| rounds, and agents in Si∗(ti

∗
) move sequentially. The play starts from round 1 and proceeds,

but the play stops before reaching the next round if some agent on the move chooses to do so. These

rounds are described as follows.

Round j ∈ {1,2, . . . , |Si∗(ti
∗
)|}. Let agent j̄ be the agent with the j-th least index number

among those in the coalition Si∗(ti
∗
). In this round, agent j̄ ∈ Si∗(ti

∗
) announces bj̄ ∈ {0, 1}.

If bj̄ = 0 and j < |Si∗(ti
∗
)|, then the play proceeds to round j + 1.

If bj̄ = 0 and j = |Si∗(ti
∗
)|, then the play stops and the outcome allocation xN at this terminal node

is constructed as follows. For each i ∈ Si∗(ti
∗
), the outcome is such that xi = yi∗

i . If N \Si∗(ti
∗
) is non-

empty, then let agent k ∈ N \Si∗(ti
∗
) be the agent with the least index number among those outside the

coalition Si∗(ti
∗
). If N \(Si∗(ti

∗
)∪{k}) is non-empty, then for each i ∈ N \(Si∗(ti

∗
)∪{k}), the outcome

is such that xi = (0, . . . , 0) ∈ Rℓ. For agent k, the outcome is such that xk =
∑

i∈N ωi −
∑

i∈N\{k} xi.

If bj̄ = 1, then the play stops even if there still remain some rounds. At this terminal node, the

outcome allocation is x̄N .
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Theorem. The game form Γ(ωN ) implements the ordinal Shapley value φ in subgame-perfect equi-

librium. That is, for any given endowment profile ωN ∈ Rℓn, it is the case that SPE(Γ(ωN ), RN ) =

φ(RN , ωN ) for all RN ∈ RN .

This theorem is our main result. The following two sections prove the theorem.

3–2. Proof: SPE(Γ(ωN),RN) ⊂ φ(RN , ωN) for all RN ∈ RN .

Choose any arbitrary ωN ∈ Rℓn and RN ∈ RN and fix them throughout this section. This RN is

regarded as a ‘true’ preference profile of agents. Furthermore, choose any arbitrary subgame-perfect

equilibrium allocation x̄N ∈ SPE (Γ(ωN ), RN ). This section proves that x̄N ∈ φ(RN , ωN ).

Lemma 1. A subgame-perfect equilibrium allocation x̄N ∈ SPE(Γ(ωN ), RN ) is realized only when

case 1 of stage 1 applies on the equilibrium path.

Proof. Suppose, by way of contradiction, that case 1 of stage 1 does not apply on the equilibrium

path. Then, there exist at least (n − 1) agents who have an opportunity in stage 1 to change his

announcement so that case 3 of stage 1 applies. If such an agent i changes his announcement of zi so

that zi > zj for all j ∈ N \ {i}, then he can obtain the outcome xi = ωi + (n− 1)zie such that xi Pi x̄i

for sufficiently large zi. That is, this agent can gain by deviating from the equilibrium path.

By Lemma 1, we may assume that in subgame-perfect equilibrium, all agents in stage 1 announce

(R̄N , x̄N , 0) such that x̄N ∈ φ(R̄N , ωN ) for some R̄N ∈ RN .

Lemma 2. Suppose that all agents in stage 1 announce (R̄N , x̄N , 0) such that x̄N ∈ φ(R̄N , ωN ) in

subgame-perfect equilibrium. For any sequence

Q(R̄N , ωN , x̄N ) ≡ [ S(t) , ωS(t)(t) , xS(t)(t) ]t=1,2,...,n ∈ Q(R̄N , ωN , x̄N ),

for any t ∈ N , and for any i ∈ S(t), it is the case that x̄i Ri xi(t).

Proof. Suppose, by way of contradiction, that there exists a sequence Q(R̄N , ωN , x̄N ) such that for

some t′ ∈ N and some i′ ∈ S(t′), it is the case that xi′(t
′) Pi′ x̄i′ . If agent i′ announces (R̄N , x̄N , 3)

together with t′ and Q(R̄N , ωN , x̄N ) in stage 1, then subcase 2–3 applies and agent i′ can obtain the

outcome xi′(t
′). That is, agent i′ can gain by deviating from the equilibrium path.

Lemma 3. Suppose that all agents in stage 1 announce (R̄N , x̄N , 0) such that x̄N ∈ φ(R̄N , ωN ) in

8
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subgame-perfect equilibrium. For any sequence

Q(R̄N , ωN , x̄N ) ≡ [ S(t) , ωS(t)(t) , xS(t)(t) ]t=1,2,...,n ∈ Q(R̄N , ωN , x̄N ),

for any t ∈ N , and for any i ∈ S(t), it is the case that xi(t)Ri x̄i.

Proof. Suppose, by way of contradiction, that there exists a sequence Q(R̄N , ωN , x̄N ) such that for

some t′ ∈ N and some j′ ∈ S(t′), it is the case that x̄j′ Pj′ xj′(t
′). Since agent j′ has a continuous

preference relation, there exists a positive real number ε′ > 0 such that x̄j′ Pj′ (xj′(t
′) + ε′e).

Since x̄j′ = xj′(1) by the construction of the sequence, the fact that x̄j′ Pj′ xj′(t
′) implies that

t′ ≥ 2. Furthermore, since t′ ≥ 2 and hence S(t′) � N , there exists an agent i′ /∈ S(t′). We will show

that agent i′ can gain by a unilateral deviation from the equilibrium path.

If agent i′ announces (R̄N , x̄N , 1, t′, j′, ε′) together with Q(R̄N , ωN , x̄N ) in stage 1, then subcase

2–1 applies and the play proceeds to stage 2–1. In the subgame to follow, agent j′ in stage 2–1 obtains

(xj′(t
′)+ε′e) if he announces a = 0, and he obtains x̄j′ if he announces a = 1. Since x̄j′Pj′ (xj′(t

′)+ε′e),

agent j′ must choose a = 1 according to his equilibrium strategy for this subgame.

When agent j′ announces a = 1 in this subgame, agent i′ obtains the outcome (x̄i′ + ε′e). Since

ε′ > 0 and agent i′ has a monotone preference relation, agent i′ should prefer this outcome to the

equilibrium outcome x̄i′ .

Lemma 4. Suppose that all agents in stage 1 announce (R̄N , x̄N , 0) such that x̄N ∈ φ(R̄N , ωN ) in

subgame-perfect equilibrium. For any sequence

Q(R̄N , ωN , x̄N ) ≡ [ S(t) , ωS(t)(t) , xS(t)(t) ]t=1,2,...,n ∈ Q(R̄N , ωN , x̄N ),

for any t ∈ N , and for any i ∈ S(t), it is the case that x̄i Ii xi(t).

Proof. This is a direct implication of Lemmas 2 and 3.

Lemma 5. Suppose that all agents in stage 1 announce (R̄N , x̄N , 0) such that x̄N ∈ φ(R̄N , ωN ) in

subgame-perfect equilibrium. For any sequence

Q(R̄N , ωN , x̄N ) ≡ [ S(t) , ωS(t)(t) , xS(t)(t) ]t=1,2,...,n ∈ Q(R̄N , ωN , x̄N )

and for any t ∈ N , an allocation xS(t)(t) is efficient for S(t) with RS(t)(t) and ωS(t)(t).

9
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Proof. Suppose, by way of contradiction, that for some sequence Q(R̄N , ωN , x̄N ) and for some

t′ ∈ N , there exists an allocation yS(t′) ∈ XS(t′)(ωS(t′)) such that yi Ri xi(t
′) for all i ∈ S(t′) and

yj Pj xj(t
′) for some j ∈ S(t′). Then, since each agent has a continuous and monotone preference

relation, there exists an allocation y′
S(t′) ∈ XS(t′)(ωS(t′)) such that y′i Pi xi(t

′) for all i ∈ S(t′).8 Note

that y′
iPi x̄i for all i ∈ S(t′) since x̄i Iixi(t

′) for all i ∈ S(t′) by Lemma 4. Consider any agent i′ ∈ S(t′).

We will show that agent i′ can gain by a unilateral deviation from the equilibrium path.

If agent i′ announces (R̄N , x̄N , 2) together with t′ and Q(R̄N , ωN , x̄N ) and y′
S(t′) in stage 1, then

subcase 2–2 applies and the play proceeds to stage 2–2. We use backward induction arguments for the

subgame that starts at the beginning of stage 2–2 given the above announcement by agent i′.

First, consider any subgame that starts at the beginning of round |S(t′)|. In this round, agent i on

the move obtains y′i if he announces bi = 0, and he obtains x̄i if he announces bi = 1. Since y′i Pi x̄i,

agent i must choose bi = 0 according to his equilibrium strategy for this subgame.

Next, consider any subgame that starts at the beginning of round k such that k < |S(t′)|. In this

round, if agent i on the move announces bi = 0, then the play proceeds to round k + 1 and he obtains

y′
i eventually. If he announces bi = 1, then he obtains x̄i. Since y′

i Pi x̄i, agent i must choose bi = 0

according to his equilibrium strategy for this subgame.

The above arguments show that, by a deviation to a path to stage 2–2, agent i′ can obtain the

outcome y′i′ that he should prefer to the equilibrium outcome x̄i′ .

Lemma 6. Suppose that all agents in stage 1 announce (R̄N , x̄N , 0) such that x̄N ∈ φ(R̄N , ωN ) in

subgame-perfect equilibrium. For any sequence

Q(R̄N , ωN , x̄N ) ≡ [ S(t) , ωS(t)(t) , xS(t)(t) ]t=1,2,...,n ∈ Q(R̄N , ωN , x̄N )

and for any t ∈ N , an allocation xS(t)(t) is in φ(RS(t), ωS(t)(t)).

Proof. We use induction arguments to show xS(t)(t) ∈ φ(RS(t), ωS(t)(t)) for t = n, n− 1, . . . , 1.

(t = n) Take any sequence Q(R̄N , ωN , x̄N ) ∈ Q(R̄N , ωN , x̄N ). Since |S(t)| = 1, it is the case

that φ(R̄S(t), ωS(t)(t)) = φ(RS(t), ωS(t)(t)) = {ωS(t)(t)} by the definition of the ordinal Shapley value.

Since xS(t)(t) ∈ φ(R̄S(t), ωS(t)(t)) by the construction of the sequence, it is the case that xS(t)(t) ∈

8If |S(t′)| = 1, then yj Pj xj(t
′) for j ∈ S(t′) = {j}. If |S(t′)| ≥ 2, then we can construct an allocation

y′
S(t′) ∈ XS(t′)(ωS(t′)) such that y′i = yi + δe for all i ∈ S(t′) \ {j} and y′j = yj − (|S(t′)| − 1)δe with very

small δ > 0. If δ is sufficiently small, then it is the case that y′i Pi xi(t
′) for all i ∈ S(t′) since each agent has a

continuous and monotone preference relation.
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φ(RS(t), ωS(t)(t)).

(t ≤ n− 1) We assume that it has been shown that xS(t+1)(t+ 1) ∈ φ(RS(t+1), ωS(t+1)(t+ 1)) for

all Q(R̄N , ωN , x̄N ) ∈ Q(R̄N , ωN , x̄N ).

Take any sequence Q(R̄N , ωN , x̄N ) ∈ Q(R̄N , ωN , x̄N ). By Lemma 5, we know that xS(t)(t) is

efficient for S(t) with RS(t)(t) and ωS(t)(t). Since xS(t)(t) ∈ φ(R̄S(t), ωS(t)(t)) by the construction of the

sequence, there exists a unique9 |S(t)|-tuple of concession vectors, (ci)i∈S(t) with ci ≡ (cij)j∈S(t)\{i} ∈

R|S(t)|−1 for each i ∈ S(t), and the concession vectors satisfy the consistency condition with respect

to R̄S(t)(t), and the fairness condition,
∑

j∈S(t)\{i} c
i
j =

∑
j∈S(t)\{i} c

j
i for all i ∈ S(t).10 Considering

the definition of the ordinal Shapley value, we are left to show that the concession vectors satisfy the

consistency condition with respect to RS(t)(t) in order to prove that xS(t)(t) ∈ φ(RS(t), ωS(t)(t)). The

following claim shows the result and completes the proof of the present lemma.

Claim. For each i ∈ S(t), there exists x′
S(t)\{i} ∈ φ(RS(t)\{i}, (ωj(t) + cije)j∈S(t)\{i}) such that

xj(t) Ij x
′
j for all j ∈ S(t) \ {i}.

Proof of Claim. Take any i′ ∈ S(t) and choose a sequence

Q′(R̄N , ωN , x̄N ) ≡ [ S′(t′) , ω′
S′(t′)(t

′) , x′
S′(t′)(t

′) ]t′=1,2,...,n ∈ Q(R̄N , ωN , x̄N )

such that [S′(t′), ω′
S′(t′)(t

′), x′
S′(t′)(t

′)] = [S(t′), ωS(t′)(t
′), xS(t′)(t

′)] for all t′ ≤ t and S′(t+1) = S′(t) \

{i′}. By the construction of this sequence, it is the case that ω′
j(t + 1) = ω′

j(t) + ci
′
j e for all j ∈

S′(t + 1). By the induction assumption, x′
S′(t+1)(t + 1) ∈ φ(RS′(t+1), ω

′
S′(t+1)(t + 1)). Lemma 4

implies that xj(t) Ij x̄j Ij x
′
j(t+1) for all j ∈ S′(t+1). Therefore, we have shown that x′

S′(t+1)(t+1) ∈

φ(RS(t)\{i′}, (ωj(t)+ci
′
j e)j∈S(t)\{i′}) and xj(t)Ij x

′
j(t+1) for all j ∈ S(t)\{i′}. Note that x′

S′(t+1)(t+1)

can be interpreted as x′
S(t)\{i} that appears in the statement of the claim. Since the choice of i′ ∈ S(t)

is arbitrary, the claim holds.

Proposition 1. SPE (Γ(ωN ), RN ) ⊂ φ(RN , ωN ) for all RN ∈ RN .

Proof. Suppose that we are given RN ∈ RN . Choose any arbitrary subgame-perfect equilibrium

allocation x̄N ∈ SPE(Γ(ωN ), RN ). By Lemma 1, we may assume that all agents in stage 1 announce

(R̄N , x̄N , 0) such that x̄N ∈ φ(R̄N , ωN ) for some R̄N ∈ RN . Choose any sequence Q(R̄N , ωN , x̄N ) ≡

[S(t), ωS(t)(t), xS(t)(t)]t=1,2,...,n ∈ Q(R̄N , ωN , x̄N ). By Lemma 6, xS(1)(1) ∈ φ(RS(1), ωS(1)(1)). Since

9The uniqueness is due to Fact 3.
10The fairness condition is independent of R̄S(t)(t).
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S(1) = N , ωS(1)(1) = ωN , and xS(1)(1) = x̄N by the construction of the sequence, it is the case that

x̄N ∈ φ(RN , ωN ).

3–3. Proof: φ(RN , ωN) ⊂ SPE(Γ(ωN),RN) for all RN ∈ RN .

Choose any arbitrary ωN ∈ Rℓn and RN ∈ RN and fix them throughout this section. This RN is

regarded as a ‘true’ preference profile of agents. Furthermore, choose any x̄N ∈ φ(RN , ωN ). This

section proves that x̄N ∈ SPE(Γ(ωN ), RN ).

We now define a strategy profile mN ∈ MN that attains x̄N as a subgame-perfect equilibrium

allocation for the game (Γ(ωN ), RN ).

The strategy profile mN ∈ MN .

Stage 1. For each agent i, his announcement is such that

(Ri
N , xi

N , zi, ti, ji, εi) = (RN , x̄N , 0, 1, 1, 1)

together with an arbitrary sequence Qi(RN , ωN , x̄N ) ∈ Q(RN , ωN , x̄N ) and an arbitrary feasible allo-

cation yi
N ∈ XN (ωN ).

Stage 2–1. For each subgame that starts at the beginning of stage 2–1, agent ji
∗
∈ Si∗(ti

∗
) on

the move announces a = 0 if (xi∗

ji
∗ (ti

∗
) + εi

∗
e) Pji

∗ x̄ji
∗ , and a = 1 otherwise.

Round j ∈ {1,2, . . . , |Si∗(ti
∗
)|} in stage 2–2. For each subgame that starts at the beginning

of round j in stage 2–2, agent j̄ on the move in round j announces bj̄ = 0 if yi∗

j̄ Pj̄ x̄j̄ , and bj̄ = 1

otherwise.

Lemma 7. For each subgame that starts at the beginning of stage 2–1, the strategy profile induced

by mN is a Nash equilibrium.

Proof. In this subgame, there is only one agent, agent ji
∗
∈ Si∗(ti

∗
), who is on the move. If he

announces a = 0, then the outcome for him is xi∗

ji
∗ (ti

∗
)+εi

∗
e. If he announces a = 1, then the outcome

for him is x̄ji
∗ .

Therefore, if (xi∗

ji
∗ (ti

∗
) + εi

∗
e) Pji

∗ x̄ji
∗ , then it is a best response for him to follow mji

∗ and

announce a = 0. If x̄ji
∗ Rji

∗ (xi∗

ji
∗ (ti

∗
) + εi

∗
e), then it is a best response for him to follow mji

∗ and

announce a = 1.
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Lemma 8. For each subgame that starts at the beginning of round j ∈ {1, 2, . . . , |Si∗(ti
∗
)|} in stage

2–2, the strategy profile induced by mN is a Nash equilibrium.

Proof. Consider any agent j̄ who is on the move in any round j′ with j′ ≥ j in this subgame. If he

announces bj̄ = 0, then the outcome for him is either yi∗

j̄ or x̄j̄ , depending on the announcements by

the agents in the subsequent rounds. If he announces bj̄ = 1, then the outcome for him is x̄j̄ .

Therefore, if yi∗

j̄ Pj̄ x̄j̄ , then it is a best response for him to follow mj̄ and announce bj̄ = 0. If

x̄j̄ Rj̄ y
i∗

j̄ , then it is a best response for him to follow mj̄ and announce bj̄ = 1.

Since the above arguments apply for any agent on the move in this subgame, the strategy profile

induced by mN for this subgame is a Nash equilibrium.

Lemma 9. The strategy profile mN is a Nash equilibrium of the game (Γ(ωN ), RN ).

Proof. Note that the outcome allocation for the strategy profile mN is x̄N since case 1 applies in

stage 1.

Consider any agent i ∈ N . We will prove that mi is a best response to mN\{i} by showing that

agent i cannot obtain an outcome better than x̄i even if he unilaterally quits following mi and changes

his announcements when he is on the move.

By Lemma 8, we know that in any subgame that starts in stage 2–2, agent i’s best response is

to follow mi. So, we may assume that agent i moves according to mi in stage 2–2. Henceforth, we

investigate whether agent i can obtain an outcome better than x̄i by changing his announcements in

stage 1. By such a deviation, agent i can become agent i∗ and obtain an outcome realized in either

subcase 2–1, 2–2, 2–3, or 2–4.

First, suppose that subcase 2–1 applies due to agent i∗’s deviation. In stage 2–1 to follow, agent ji
∗

moves. We note that i∗ ̸= ji
∗
since i∗ /∈ Si∗(ti

∗
) and ji

∗
∈ Si∗(ti

∗
). By the construction of the sequence

Qi∗(RN , ωN , x̄N ) announced by agent i∗ in this subcase, it is the case that x̄ji
∗ Iji∗ xi∗

ji
∗ (ti

∗
). Since

εi
∗
> 0 and agent ji

∗
has a monotone preference relation, it is the case that (xi∗

ji
∗ (ti

∗
)+ εi

∗
e)Pji

∗ x̄ji
∗

and hence agent ji
∗

announces a = 0 according to mji
∗ . Therefore, the outcome for agent i∗ is

(x̄i∗ − εi
∗
e), which is worse than x̄i∗ since agent i∗ has a monotone preference relation.

Second, suppose that subcase 2–2 applies due to agent i∗’s deviation. In stage 2–2 to follow, agents

in Si∗(ti
∗
) move sequentially. We now pay attention to xi∗

Si∗ (ti
∗
)
(ti

∗
) in the sequence Qi∗(RN , ωN , x̄N )

announced by agent i∗ in this subcase. Since xi∗

Si∗ (ti
∗
)
(ti

∗
) ∈ φ(RSi∗ (ti

∗
), ωSi∗ (ti

∗
)(t

i∗)), the definition

of the ordinal Shapley value tells us that xi∗

Si∗ (ti
∗
)
(ti

∗
) is efficient for Si∗(ti

∗
) with RSi∗ (ti

∗
) and

13
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ωSi∗ (ti
∗
)(t

i∗). Therefore, by comparing agent i∗’s announcements of xi∗

Si∗ (ti
∗
)
(ti

∗
) and yi∗

Si∗ (ti
∗
)
∈

XSi∗ (ti
∗
)(ωSi∗ (ti

∗
)(t

i∗)), we can say that there exists some agent j ∈ Si∗(ti
∗
) such that xi∗

j (ti
∗
)Rj y

i∗
j .

Furthermore, by the construction of the sequence Qi∗(RN , ωN , x̄N ), it is the case that x̄j Ij x
i∗
j (ti

∗
).

Therefore, we can say that there exists some agent j ∈ Si∗(ti
∗
) such that x̄j Rj yi∗

j . This agent j

announces bj = 1 according to mj when he is on the move in stage 2–2. So, it cannot happen that

every agent j′ in Si∗(ti
∗
) announces bj

′
= 0 sequentially in stage 2–2. Therefore, the outcome allocation

is x̄N and the outcome for agent i∗ is x̄i∗ .

Third, suppose that subcase 2–3 applies due to agent i∗’s deviation. In this subcase, the outcome

for agent i∗ is xi∗
i∗(t

i∗). By the construction of the sequence Qi∗(RN , ωN , x̄N ) announced by agent i∗

in this subcase, it is the case that x̄i∗ Ii∗ xi∗
i∗(t

i∗).

Fourth, suppose that subcase 2–4 applies due to agent i∗’s deviation. In this subcase, the outcome

allocation is x̄N and the outcome for agent i∗ is x̄i∗ .

The above investigations show that agent i∗, namely agent i, cannot obtain an outcome better than

x̄i even if he unilaterally quits following mi and changes his announcements when he is on the move.

Since the above arguments apply not only for agent i but also for any other agent, the strategy profile

mN is a Nash equilibrium of the game (Γ(ωN ), RN ).

Proposition 2. φ(RN , ωN ) ⊂ SPE (Γ(ωN ), RN ) for all RN ∈ RN .

Proof. Suppose that we are given RN ∈ RN . Choose any arbitrary ordinal Shapley value allocation

x̄N ∈ φ(RN , ωN ). Consider the strategy profile mN ∈ MN defined in this section. Lemmas 7 through 9

show that mN is a subgame-perfect equilibrium of the game (Γ(ωN ), RN ) and its outcome allocation

is x̄N . Therefore, x̄N ∈ SPE(Γ(ωN ), RN ).

Propositions 1 and 2 complete the proof of the theorem.

4. Conclusion

We have proposed a game form that implements the ordinal Shapley value in subgame-perfect equi-

librium. Our game form can be used as a tool for the social planner who wishes to realize the ordinal

Shapley value but does not possess information on preference relations of agents. Our game form

achieves full implementation. That is, not only every allocation in the ordinal Shapley value can be

realized as an equilibrium allocation, but also every equilibrium allocation is in fact an allocation in

the ordinal Shapley value.
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We have closely followed Perez-Castrillo andWettstein [2004] for modelling pure exchange economies

where the ordinal Shapley value is defined. We consider that one drawback of the model is the as-

sumption that each agent’s consumption space is not restricted to the non-negative orthant. This

assumption seems necessary for proving the existence of the ordinal Shapley value, but the assumption

is not standard in most microeconomics textbooks. It would be desirable if we can drop this assump-

tion and restrict each agent’s consumption space to the non-negative orthant, and still guarantee the

existence of the ordinal Shapley value and design a game form achieving its implementation.
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