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Abstract

To solve the free-rider problem, the literature has proposed various Lindahl mechanisms that attain Lindahl

allocations for public good economies as equilibrium outcomes of the games. But Saijo and Yamato [1999] have

proved that, for any Lindahl mechanism, some agents may have incentives not to participate in the mechanism.

To overcome such non-participation problems, Samejima [2004] has proposed to redesign Lindahl mech-

anisms. The present paper extends Samejima’s result to general allocation problems, and shows that non-

participation problems can be overcome for β∗-core mechanisms, that is, mechanisms that implement a sub-

correspondence of the β∗-core. The β∗-core in the present paper is a subset of the β-core proposed by Aumann

and Peleg [1960], but both cores are almost identical except for the treatment of indifference relations in the

definition of blocking. An example of β∗-core mechanisms is a Lindahl mechanism proposed by Walker [1981].

The present paper shows how to redesign β∗-core mechanisms to overcome non-participation problems.

Our redesigned mechanisms have three significant properties. First, agents are given opportunities to show

willingness not to participate in β∗-core mechanisms, possibly by passing over such willingness in silence. Sec-

ond, ‘non-participation decisions’ are used as messages for the redesigned mechanisms. Third, the redesigned

mechanisms respect the rights of non-participants in the sense that the mechanisms never interfere with actions

of non-participants. In spite of these properties, the redesigned mechanisms can implement a sub-correspondence

of the β∗-core in subgame-perfect equilibrium.

1. Introduction

This paper proposes a solution to non-participation problems for mechanisms that attain β∗-core allo-

cations in a general allocation model.

Lindahl equilibrium for public good economies has desirable properties such as Pareto efficiency

and individual rationality. However, in Lindahl equilibria, agents have incentives to under-report their
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valuations of public goods. Such incentives to misrepresent their preferences result in under-provisions

of the public goods. This is called the free-rider problem.

To solve the free-rider problem, economists have designed various mechanisms that attain Lindahl

allocations as equilibrium outcomes of the games. A mechanism in the field of game theory is also

called a game form. It specifies rules of the game; A game form consists of message spaces1 and an

outcome function.2 Lindahl mechanisms, which attain Lindahl allocations as equilibrium outcomes of

the games, have been proposed by Hurwicz [1979], Walker [1981], and so on.

However, Saijo and Yamato [1999] have proved that, for any Lindahl mechanism, some agents

may have incentives not to participate in the mechanism. The previous studies on mechanism design

implicitly assume that all agents participate in the proposed mechanism. If agents have the freedom

of non-participation, then they might not participate, knowing that they can free-ride on the public

goods provided by participants. This is what Saijo and Yamato call non-participation problems.

Why is non-participation a serious problem? We would like to point out two reasons. The first

reason is no-message problem. Since the mechanisms may not be able to get adequate messages from

non-participants, the mechanisms may not select a Lindahl allocation for the society as an outcome of

a message profile of all agents. The second reason is no-tax problem. Since the mechanisms cannot tax

non-participants and use their private resources for the provision of public goods, the mechanisms may

end up allowing non-participants to free-ride on the public goods provided by participants.

To overcome such non-participation problems, Samejima [2004] has proposed to redesign Lindahl

mechanisms. The redesigned mechanism incorporates the existing Lindahl mechanism as a component,

and offers a solution to problems of non-participation.

As a solution to no-message problem, Samejima has proposed to use ‘participation/non-participation

decisions’ as messages for the redesigned mechanisms. By doing so, the redesigned mechanisms can

receive some messages from all agents including both participants and non-participants in the incorpo-

rated Lindahl mechanisms. Although every agent may be able to choose to reveal no message for the

incorporated Lindahl mechanism, every agent necessarily reveals some message (i.e. participation/non-

participation decision) for the redesigned mechanism.

As for no-tax problem, there is not a solution because controlling private resources of non-participants

is considered to be an infringement of their property rights. But it is reasonable to assume that mech-

anisms are allowed to control private resources of participants because they have chosen participation

1Message spaces specify what kind of messages each agent should submit to the mechanism as his strategy.
2An outcome function in the standard studies specifies which allocation the mechanism selects as an outcome

of a given message profile.
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voluntarily with an agreement to follow the rules of the mechanisms. Such an assumption is standard in

the literature. Based on this assumption, Samejima’s redesigned mechanisms control private resources

of agents who have explicitly chosen to participate in the incorporated Lindahl mechanisms while the

redesigned mechanisms do not control private resources of agents who have chosen not to participate in

the incorporated Lindahl mechanisms. In the redesigned mechanisms, it is possible to control partici-

pants’ resources so that non-participants are induced to change their decisions and choose participation

in the incorporated Lindahl mechanisms.

The present paper extends the result by Samejima [2004] from public good provision problems

to general allocation problems. We show that for any mechanism that attains β∗-core allocations as

equilibrium outcomes, we can redesign the mechanism so that non-participation problems do not occur.

The β∗-core is almost identical to the β-core proposed by Aumann and Peleg [1960] for cooperative

games without side payments. The difference between the β∗-core and the β-core lies in the treatment

of indifference relations in the definition of blocking.

In addition to the generality of the model, the present paper differs from Samejima [2004] in

that we use equilibrium notions that are more standard in the literature. Samejima [2004] has defined

order-independent subgame-perfect equilibrium for his analysis, but the present paper employs subgame-

perfect equilibrium proposed by Selten [1975]. Furthermore, in its attempt to generalize the model,

Samejima [2004] has defined the core under a, where a represents a specific joint action profile, but

this notion of the core is far from standard. The present paper employs the β∗-core, which is almost

identical to the β-core that is classical in the literature.

The remaining part of this paper is organized as follows. Section 2 explains a model of general

allocation problems and introduces the notions of the β∗-core and mechanisms. Section 3 presents our

result, and Section 4 concludes.

2. The Model

2–1. The general environment

The set of agents in the society is denoted by N = {1, 2, . . . , n}. We assume that |N | ≥ 2. A coalition

is a non-empty subset of N and it is denoted typically by S. The set of allocations in the society is

denoted by X̄. For example, an allocation x ∈ X̄ represents a distribution of private goods among

agents and an amount of public goods provided in the society.

We assume that an allocation is realized as a result of actions of all agents. The set of feasible actions

for a coalition S is denoted by AS . For notational convenience, a{i} and A{i} are simply denoted by ai
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and Ai, respectively. For example, agent i’s action ai ∈ Ai represents his decision about an amount of

private consumption of his endowments and an amount of his contributions for the provision of public

goods in the society. Let h : AN → X̄ be a function that assigns an allocation to each action of N .

We assume that an action of a proper subset S � N of agents cannot determine a specific allocation

in the society. That is, it is actions of all agents that can determine an allocation in the society. This

is because an allocation may represent an amount of goods with externalities: non-excludable public

goods, air pollution, and so on. For example, an amount of pollution in the society is determined by

summing up an amount of pollution emitted by all agents, not by a proper subset of agents. We say

that an allocation x ∈ X̄ is feasible if x = h(aN ) for some aN ∈ AN . The set of feasible allocations is

denoted by X.

Each agent i has a complete and transitive preference relation Ri defined over X̄. As usual, xRi x
′

means that x is at least as good as x′ for agent i. The associated strict preference relation is denoted

by Pi. That is, x Pi x
′ means that agent i prefers x to x′. Let Ri be the set of admissible preferences

of agent i. A preference profile of a coalition S is denoted by RS ≡ (Ri)i∈S and the set of admissible

preference profiles of a coalition S is denoted by RS ≡ ×i∈SRi.

A social choice correspondence φ : RN ⇒ X is a set-valued function that assigns a non-empty subset

of feasible allocations to each profile of preferences of all agents.

A coalition S is said to β-block a feasible allocation x ∈ X if for each aN\S ∈ AN\S , there exists

aS ∈ AS such that h(aS , aN\S)Pix for all i ∈ S.3 A feasible allocation x ∈ X is a β-core allocation if no

coalition can β-block x. Given a preference profile RN ∈ RN , we obtain the set of β-core allocations,

which we denote by C(RN ).

The above definition of β-blocking is standard in the literature, but we consider a slightly different

definition to obtain the result of the present paper. A coalition S is said to β∗-block a feasible allocation

x ∈ X if for each aN\S ∈ AN\S , there exists aS ∈ AS such that h(aS , aN\S) ̸= x and h(aS , aN\S)Ri x

for all i ∈ S. A feasible allocation x ∈ X is a β∗-core allocation if no coalition can β∗-block x. Given

a preference profile RN ∈ RN , we obtain the set of β
∗-core allocations, which we denote by C∗(RN ).

The difference between the β∗-core and the β-core lies in the treatment of indifference relations in

the definition of blocking. Note that if S can β-block x, then S can also β∗-block x. Therefore,

C∗(RN ) ⊂ C(RN ).

In general, the set of β∗-core allocations may be the empty set.4 But if the set of β∗-core alloca-

3In the definition of β-blocking as well as in the definition of β∗-blocking to follow, we allow the case S = N .
In this case, the phrase ‘for each aN\S ∈ AN\S ’ is vacuous.

4In some models, the existence of β∗-core allocations is guaranteed as we discuss in Section 2–2.
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tions is non-empty and a social choice correspondence φ selects β∗-core allocations for all admissible

preference profiles, that is, if φ(RN ) ⊂ C∗(RN ) ̸= ∅ for all RN ∈ RN , then we say that φ is a

sub-correspondence of the β∗-core.

A mechanism Γ is an extensive game form as studied in Moore and Repullo [1988]. The mechanism

consists of a game tree with a set of message choices available to agents at each information set, an

outcome function, and a set of participants at the initial node. Unlike the standard studies in the

literature, we consider the possibility that the set of participants in the mechanism may vary as play

proceeds.

A participant in the mechanism is defined as an agent who has voluntarily and explicitly chosen

to follow the rules of the mechanism. In other words, a participant i is an agent who has allowed the

mechanism to control his action. An agent who is not a participant is a non-participant. For each node t

in the game tree, we denote the set of participants at node t by T (t). Particularly, the set of participants

at the initial node of the mechanism is denoted by T . If a non-participant has an opportunity in the

game tree to show his willingness to participate, then he can become a participant. So, if a node t is a

predecessor of a node t′, then we have T (t) ⊂ T (t′).5 The standard studies assume that all agents are

participants at the initial node, that is, T = N . However, in Section 3, we will consider the case where

no agent is a participant at the initial node, that is, T = ∅.

The outcome function of the mechanism associates with each terminal node t an action of the

set of participants, at
T (t) ∈ AT (t). So, at the terminal node t, the mechanism controls actions of the

participants in T (t) while it never interferes with actions of the non-participants in N \T (t). We assume

that the set of non-participants will take some action at
N\T (t) ∈ AN\T (t) for their own benefit after

watching the action at
T (t) of the participants.

6

Agent i’s strategy mi is a function that associates agent i’s message choice from available choices

with each information set for which he is on the move. We do not consider mixed strategies in the

present paper. The set of agent i’s strategies is also called agent i’s message space and denoted by Mi.

We note that in the above definition of agent i’s strategy, we do not assume that he is a participant.

This is because in the redesigned mechanism that we discuss in Section 3, a non-participant inevitably

chooses a strategy, where he reveals a message telling that he has chosen non-participation.

5In other words, non-participants can become participants but not vice versa. We consider that this assump-
tion may not be unreasonable because participants have voluntarily allowed the mechanism to control their
actions. Furthermore, we note that the assumption in the standard studies is much more stronger; They take it
for granted that all agents are participants at the initial node.

6To obtain our result in Section 3, it does not matter whether the non-participants choose at
N\T (t)

coopera-

tively or non-cooperatively.
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A strategy profile of a coalition S of agents is denoted by mS ≡ (mi)i∈S . The set of strategy profiles

of S is denoted by MS ≡ ×i∈SMi, which is also called message spaces of S. Given a strategy profile

mN of all agents, we can associate with mN a terminal node t, and by using the outcome function, we

can also associate with mN an action at
T (t) of the participants at the terminal node t. Furthermore, we

can associate with mN an action at
N\T (t) that the non-participants at the terminal node t choose for

their own benefit after watching at
T (t). So, we can define an outcome allocation function g : MN → X

as follows; For each mN ∈ MN , let g(mN ) ≡ h(at
T (t), a

t
N\T (t)), where T (t) is the set of participants at

the terminal node t associated with mN .

A list (Γ, RN ) defines an extensive game. A strategy profile mN is a Nash equilibrium of (Γ, RN ) if

no agent can benefit by changing his strategy while the others keep their strategies unchanged; That is,

g(mN )Ri g(m
′
i,mN\{i}) for all i ∈ N and for all m′

i ∈ Mi. A strategy profile mN is a subgame-perfect

equilibrium of (Γ, RN ) if in every subgame of (Γ, RN ), the strategy profile induced by mN is a Nash

equilibrium. By definition, a strategy profilemN is a subgame-perfect equilibrium of (Γ, RN ) if and only

if the strategy profile induced by mN is a subgame-perfect equilibrium in every subgame of (Γ, RN ).

Let NE(Γ, RN ) be the set of Nash equilibrium allocations corresponding to the Nash equilibria of the

game (Γ, RN ).
7 Let SPE(Γ, RN ) be the set of subgame-perfect equilibrium allocations corresponding

to the subgame-perfect equilibria of the game (Γ, RN ).
8

We say that a mechanism Γ implements a social choice correspondence φ in Nash equilibrium if

NE(Γ, RN ) = φ(RN ) for all RN ∈ RN . Similarly, we say that a mechanism Γ implements a social

choice correspondence φ in subgame-perfect equilibrium if SPE(Γ, RN ) = φ(RN ) for all RN ∈ RN .

These notions of implementation are called full implementation in the literature.

2–2. An example of the β∗-core in public good economies

This section shows that Lindahl allocations are β∗-core allocations in public good economies with

strictly convex preferences defined over consumption spaces with one private good and one pure public

good.

Each agent i ∈ N consumes one private good xi ∈ R+ and one pure public good y ∈ R+, where

y should be common among all agents.9 An allocation in the society is denoted typically by x ≡

((xi)i∈N , y) and the set of allocations is denoted by X̄ = Rn+1
+ . Each agent i is initially endowed with

a positive amount wi > 0 of the private good and no public good, y = 0. Define w ≡
∑

i∈N wi.

7That is, NE(Γ, RN ) ≡ {x ∈ X : x = g(mN ) for some Nash equilibrium mN of (Γ, RN )}.
8That is, SPE(Γ, RN ) ≡ {x ∈ X : x = g(mN ) for some subgame-perfect equilibrium mN of (Γ, RN )}.
9R+ denotes the set of non-negative real numbers.
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6

Each agent i’s preference relation Ri defined over X̄ is represented by a utility function ui(xi, y)

where ui is increasing in both arguments and ui is strictly quasi-concave.
10 That is, agent i’s preference

relation Ri is strongly monotone and strictly convex over his consumption space R2
+.

Agent i’s feasible action is ai = (xi, ci) ∈ Ai ≡ {(xi, ci) ∈ R2
+ : xi+ ci ≤ wi} where ci is the amount

of his private good that he contributes for the production of the public good.11 Define c ≡
∑

i∈N ci.

An action of a coalition S is denoted by aS = (ai)i∈S ∈ AS ≡ ×i∈SAi.

There is a production technology that transforms the private good into the public good, which is

represented by an increasing, concave production function f : R+ → R+ with f(0) = 0. As a result of

an action aN ∈ AN of all agents, they realize an allocation h(aN ) = ((xi)i∈N , y) ∈ X̄ where y = f(c).

The set of feasible allocations is denoted by X ≡ {x ∈ X̄ : x = h(aN ) for some aN ∈ AN}.

We now define a Lindahl equilibrium. Let p0 ∈ R+ denote a price of the private good and let

pi ∈ R+ denote a personalized price of the public good for agent i ∈ N . A Lindahl equilibrium with

respect to (wi)i∈N is a feasible allocation x = ((xi)i∈N , y) and a price system (p0, (pi)i∈N ) with the

following properties, L1, L2, and L3.

L1. Profit maximization. y = f(c) and
∑

i∈N pi · y − p0 · c ≥
∑

i∈N pi · y′ − p0 · c′ for all (y′, c′)

with y′ = f(c′) and c′ ∈ [0, w].

L2. Utility maximization. For all i ∈ N , we have p0 ·xi+pi ·y ≤ p0 ·wi, and if ui(x
′
i, y

′) > ui(xi, y),

then p0 · x′
i + pi · y′ > p0 · wi.

L3. Market clearing.
∑

i∈N xi + c = w.

A Lindahl allocation is a feasible allocation x = ((xi)i∈N , y) for which there exists a price system

(p0, (pi)i∈N ) that satisfies L1, L2, and L3. The existence of a Lindahl equilibrium in the current setting

can be shown by applying the theorem due to Foley [1970] with some modifications. The following

proposition is also a modification of Foley’s result. However, we would like to emphasize the importance

of strict convexity of preferences to obtain the proposition.

Proposition 1. A Lindahl allocation is a β∗-core allocation.

Proof. Let x = ((xi)i∈N , y) and (p0, (pi)i∈N ) be a Lindahl equilibrium. By way of contradiction,

suppose that there exists a coalition S ⊂ N , possibly S = N , that can β∗-block x.

Let aN\S = ((x′
i, c

′
i))i∈N\S be such that (x′

i, c
′
i) = (wi, 0) for all i ∈ N \ S. Since S can β∗-block

x, there exists aS = ((x′
i, c

′
i))i∈S ∈ AS such that h(aS , aN\S) ̸= x and h(aS , aN\S) Ri x for all i ∈ S.

10We say that ui is strictly quasi-concave if ui(αxi + (1 − α)x′
i, αy + (1 − α)y′) > min{ui(xi, y), ui(x

′
i, y

′)}
for all α ∈ (0, 1) and for all (xi, y) and (x′

i, y
′) such that (xi, y) ̸= (x′

i, y
′).

11In our definition of Ai, free disposal of his private good is admitted.
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Define c′ =
∑

i∈N c′i and y′ = f(c′). Note that h(aS , aN\S) = ((x′
i)i∈N , y′). So, we must have the fact

that ((x′
i)i∈N , y′) ̸= ((xi)i∈N , y) and ui(x

′
i, y

′) ≥ ui(xi, y) for all i ∈ S.

We first claim that
∑

i∈N pi · y′ + p0 ·
∑

i∈S(x
′
i − wi) ≤ 0. By L2 and strong monotonicity of

preferences, we have p0 ·xi+pi ·y = p0 ·wi for all i ∈ N and hence
∑

i∈N pi ·y+p0 ·
∑

i∈N (xi−wi) = 0.

This equality and L3 imply that
∑

i∈N pi · y − p0 · c = 0. Furthermore, by L1 and the fact that

x′
i + c′i ≤ wi for all i ∈ N , we obtain 0 ≥

∑
i∈N pi · y′ − p0 · c′ ≥

∑
i∈N pi · y′ + p0 ·

∑
i∈N (x

′
i − wi).

Since x′
i = wi for all i ∈ N \ S, we obtain the claim.

We next claim that
∑

i∈N pi · y′ + p0 ·
∑

i∈S(x
′
i − wi) ≥ 0. By L2 and strong monotonicity of

preferences, we have p0 ·x′
i+pi ·y′ ≥ p0 ·wi for all i ∈ S and hence

∑
i∈S pi ·y′+p0 ·

∑
i∈S(x

′
i−wi) ≥ 0.

Since pi · y′ ≥ 0 for all i ∈ N \ S, we obtain the claim.

The previous two claims imply that
∑

i∈N pi · y′ + p0 ·
∑

i∈S(x
′
i − wi) = 0. Furthermore, since

p0 · x′
i + pi · y′ ≥ p0 ·wi for all i ∈ S and pi · y′ ≥ 0 for all i ∈ N \ S as we noted previously, it must be

the case that p0 · x′
i + pi · y′ = p0 · wi for all i ∈ S and pi · y′ = 0 for all i ∈ N \ S.

We claim that (x′
i, y

′) = (xi, y) for all i ∈ S. Suppose that there is j ∈ S such that (x′
j , y

′) ̸= (xj , y).

Let (x′′
j , y

′′) = (0.5x′
j+0.5xj , 0.5y

′+0.5y). By strict convexity of agent j’s preference, that is, by strict

quasi-concavity of uj , we have the fact that uj(x
′′
j , y

′′) > min{uj(x
′
j , y

′), uj(xj , y)} = uj(xj , y), which

in turn implies that p0 ·x′′
j +pj ·y′′ > p0 ·wj by L2. However, this inequality is in contradiction with the

equality p0 ·x′′
j +pj ·y′′ = p0 ·wj , which must hold since p0 ·x′

j+pj ·y′ = p0 ·wj and p0 ·xj+pj ·y = p0 ·wj .

By the last claim, we must have y′ = y. We next show that y′ = y = 0. If y′ > 0, then, for all

i ∈ N \ S, pi · y′ = 0 implies pi = 0. When pi = 0, there does not exist (xi, y) that satisfies L2 since

agent i’s preference is strongly monotone. This non-existence is in contradiction with our assumption

that x is a Lindahl allocation. So, we must have y′ = y = 0.

The fact that p0 · xi + pi · y = p0 · wi together with y = 0 implies that xi = wi for all i ∈ N .

Recall that we have x′
i = wi for all i ∈ N \ S and (x′

i, y
′) = (xi, y) for all i ∈ S. So, we obtain

((x′
i)i∈N , y′) = ((xi)i∈N , y). However, this contradicts the fact that h(aS , aN\S) ̸= x.

3. The Result

3–1. The mechanism

Throughout the remaining part of this paper, let a social choice correspondence φ be a compact-

valued12 sub-correspondence of the β∗-core, and let a mechanism Γ be a game form that implements

12We say that φ is compact-valued if φ(RN ) is a compact set for all RN ∈ RN .
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Define c′ =
∑

i∈N c′i and y′ = f(c′). Note that h(aS , aN\S) = ((x′
i)i∈N , y′). So, we must have the fact

that ((x′
i)i∈N , y′) ̸= ((xi)i∈N , y) and ui(x

′
i, y

′) ≥ ui(xi, y) for all i ∈ S.

We first claim that
∑

i∈N pi · y′ + p0 ·
∑

i∈S(x
′
i − wi) ≤ 0. By L2 and strong monotonicity of

preferences, we have p0 ·xi+pi ·y = p0 ·wi for all i ∈ N and hence
∑

i∈N pi ·y+p0 ·
∑

i∈N (xi−wi) = 0.

This equality and L3 imply that
∑

i∈N pi · y − p0 · c = 0. Furthermore, by L1 and the fact that

x′
i + c′i ≤ wi for all i ∈ N , we obtain 0 ≥

∑
i∈N pi · y′ − p0 · c′ ≥

∑
i∈N pi · y′ + p0 ·

∑
i∈N (x

′
i − wi).

Since x′
i = wi for all i ∈ N \ S, we obtain the claim.

We next claim that
∑

i∈N pi · y′ + p0 ·
∑

i∈S(x
′
i − wi) ≥ 0. By L2 and strong monotonicity of

preferences, we have p0 ·x′
i+pi ·y′ ≥ p0 ·wi for all i ∈ S and hence

∑
i∈S pi ·y′+p0 ·

∑
i∈S(x

′
i−wi) ≥ 0.

Since pi · y′ ≥ 0 for all i ∈ N \ S, we obtain the claim.

The previous two claims imply that
∑

i∈N pi · y′ + p0 ·
∑

i∈S(x
′
i − wi) = 0. Furthermore, since

p0 · x′
i + pi · y′ ≥ p0 ·wi for all i ∈ S and pi · y′ ≥ 0 for all i ∈ N \ S as we noted previously, it must be

the case that p0 · x′
i + pi · y′ = p0 · wi for all i ∈ S and pi · y′ = 0 for all i ∈ N \ S.

We claim that (x′
i, y

′) = (xi, y) for all i ∈ S. Suppose that there is j ∈ S such that (x′
j , y

′) ̸= (xj , y).

Let (x′′
j , y

′′) = (0.5x′
j+0.5xj , 0.5y

′+0.5y). By strict convexity of agent j’s preference, that is, by strict

quasi-concavity of uj , we have the fact that uj(x
′′
j , y

′′) > min{uj(x
′
j , y

′), uj(xj , y)} = uj(xj , y), which

in turn implies that p0 ·x′′
j +pj ·y′′ > p0 ·wj by L2. However, this inequality is in contradiction with the

equality p0 ·x′′
j +pj ·y′′ = p0 ·wj , which must hold since p0 ·x′

j+pj ·y′ = p0 ·wj and p0 ·xj+pj ·y = p0 ·wj .

By the last claim, we must have y′ = y. We next show that y′ = y = 0. If y′ > 0, then, for all

i ∈ N \ S, pi · y′ = 0 implies pi = 0. When pi = 0, there does not exist (xi, y) that satisfies L2 since

agent i’s preference is strongly monotone. This non-existence is in contradiction with our assumption

that x is a Lindahl allocation. So, we must have y′ = y = 0.

The fact that p0 · xi + pi · y = p0 · wi together with y = 0 implies that xi = wi for all i ∈ N .

Recall that we have x′
i = wi for all i ∈ N \ S and (x′

i, y
′) = (xi, y) for all i ∈ S. So, we obtain

((x′
i)i∈N , y′) = ((xi)i∈N , y). However, this contradicts the fact that h(aS , aN\S) ̸= x.

3. The Result

3–1. The mechanism

Throughout the remaining part of this paper, let a social choice correspondence φ be a compact-

valued12 sub-correspondence of the β∗-core, and let a mechanism Γ be a game form that implements

12We say that φ is compact-valued if φ(RN ) is a compact set for all RN ∈ RN .

8

φ in subgame-perfect equilibrium. That is, SPE(Γ, RN ) = φ(RN ) ⊂ C∗(RN ) ̸= ∅ for all RN ∈ RN .

We allow that the mechanism Γ to be a single-stage simultaneous-move game form that implements φ

in Nash equilibrium because, for such a game form, we have the fact that NE(Γ, RN ) = SPE(Γ, RN )

for all RN ∈ RN . We assume that the mechanism Γ consists of the set of strategy profiles of all agents

MN , the associated outcome allocation function g : MN → X, and the set of participants at the initial

node T = N . We call the mechanism Γ a β∗-core mechanism. Examples of β∗-core mechanisms include

Lindahl mechanisms proposed by Hurwicz [1979] and Walker [1981] in public good economies with

strictly convex preferences discussed in Section 2–2. Since T = N is assumed for Γ, it is assumed that

all agents are participants at the initial node of the mechanism as in the standard studies.

We introduce some notations. For each RN ∈ RN , we define the least preferred allocation in φ(RN )

for agent i, which is denoted by xi(RN ).
13 That is, we have xi(RN ) ∈ φ(RN ) and x Ri xi(RN ) for all

x ∈ φ(RN ).

For each RN ∈ RN , x ∈ C∗(RN ), and a coalition S � N , we denote by aN\S(RN , x) an action

of N \ S that prevents S from β∗-blocking x under RN . That is, for all aS ∈ AS , we have either

x = h(aS , aN\S(RN , x)) or x Pi h(aS , aN\S(RN , x)) for some i ∈ S. The existence of aN\S(RN , x) is

guaranteed because x ∈ C∗(RN ) and hence S cannot β∗-block x.14

We now describe how to redesign the β∗-core mechanism Γ and obtain Γ∗. We emphasize three

significant properties of the redesigned mechanism Γ∗.

Property 1. T = ∅ is assumed for Γ∗, so no agent is a participant at the initial node of Γ∗. Each

agent is given an opportunity in Γ∗ to show his willingness to become a participant.

Property 2. Since ‘participation/non-participation decisions’ are used as messages for Γ∗, every

agent inevitably reveals some message. Even if some agent tries to reveal no message by remaining

silent, such a behavior is interpreted as choosing non-participation. So, no-message problem does not

occur.

Property 3. At each terminal node t, the redesigned mechanism controls an action at
T (t) of the

participants at the node t. Since Γ∗ never interferes with actions of the non-participants, and since

the non-participants can freely choose their action at
N\T (t) for their own benefit, we could say that the

rights of the non-participants are respected. Furthermore, since each participant has voluntarily chosen

participation, his own free will is respected, too.

13If there are multiple least preferred allocations in φ(RN ) for agent i, we pick one of them arbitrarily and
denote it by xi(RN ).

14If there are multiple actions of N \ S that prevent S from β∗-blocking x under RN , we pick one of them
arbitrarily and denote it by aN\S(RN , x).
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The redesigned mechanism Γ∗ based on Γ.

The redesigned mechanism Γ∗ consists a game tree with message spaces M∗
N , an outcome function,

and the empty set of participants at the initial node. That is, no agent is regarded as a participant at

the beginning. The following descriptions define the game tree, M∗
N , and the outcome function.

Phase 1. This is a simultaneous-move phase. Each agent i is asked to report (zi, Ri
N , xi) ∈

N0 × RN × X simultaneously, where N0 denotes the set of non-negative integers and it is required

that xi ∈ φ(Ri
N ). If zi = 0, agent i is regarded as choosing to become a participant. If zi ≥ 1,

agent i is regarded as choosing to become a non-participant. Each agent i has the right to remain

silent completely or partially, but then he is regarded as choosing zi = 1 to become a non-participant,

and (Ri
N , xi) with xi ∈ φ(Ri

N ) is chosen by the mechanism randomly. If agent i’s report does not

conform to the rules, for example, if xi /∈ φ(Ri
N ), then he is also regarded as choosing to become a

non-participant and his message is replaced by a randomly chosen message (zi, Ri
N , xi) with zi = 1 and

xi ∈ φ(Ri
N ).

Case 1. If zi = 0 for all i ∈ N , then the play proceeds to phase 2–1. This is the case where all

agents have chosen participation.

Case 2. If there exists j ∈ N such that zi = 0 ̸= zj for all i ∈ N \ {j}, then the play stops. This

is the case where only agent j has chosen non-participation.

At this terminal node t, the outcome function defines an action of the set of participants T (t) =

N \ {j} by at
T (t) = aN\{j}(R

j−1
N , xj(R

j−1
N )) where Rj−1

N is interpreted as Rn
N if j = 1.15 In words,

the outcome at this terminal node is such that participants take actions that prevent agent j from

β∗-blocking his least preferred allocation in φ(Rj−1
N ) where Rj−1

N is a preference profile reported by

another agent next to j.

Case 3. If neither case 1 nor 2 applies, then the play proceeds to phase 2–2. This is the case where

at least two agents have chosen non-participation.

Phase 2–1. This phase is reached when case 1 applies in phase 1. So, all agents are participants at

the beginning of this phase. Here, the β∗-core mechanism Γ is used as a component of the redesigned

mechanism Γ∗. All agents are asked to play a game in Γ with message spaces MN and an outcome

allocation function g. When the game in Γ reaches its terminal node, the play in Γ∗ also stops.

15We note that aN\{j}(R
j−1
N , xj(R

j−1
N )) is well-defined since xj(R

j−1
N ) ∈ φ(Rj−1

N ) ⊂ C∗(Rj−1
N ).

10



－ 129 －

A solution to problems of non-participation in β＊-core mechanisms

The redesigned mechanism Γ∗ based on Γ.

The redesigned mechanism Γ∗ consists a game tree with message spaces M∗
N , an outcome function,

and the empty set of participants at the initial node. That is, no agent is regarded as a participant at

the beginning. The following descriptions define the game tree, M∗
N , and the outcome function.

Phase 1. This is a simultaneous-move phase. Each agent i is asked to report (zi, Ri
N , xi) ∈

N0 × RN × X simultaneously, where N0 denotes the set of non-negative integers and it is required

that xi ∈ φ(Ri
N ). If zi = 0, agent i is regarded as choosing to become a participant. If zi ≥ 1,

agent i is regarded as choosing to become a non-participant. Each agent i has the right to remain

silent completely or partially, but then he is regarded as choosing zi = 1 to become a non-participant,

and (Ri
N , xi) with xi ∈ φ(Ri

N ) is chosen by the mechanism randomly. If agent i’s report does not

conform to the rules, for example, if xi /∈ φ(Ri
N ), then he is also regarded as choosing to become a

non-participant and his message is replaced by a randomly chosen message (zi, Ri
N , xi) with zi = 1 and

xi ∈ φ(Ri
N ).

Case 1. If zi = 0 for all i ∈ N , then the play proceeds to phase 2–1. This is the case where all

agents have chosen participation.

Case 2. If there exists j ∈ N such that zi = 0 ̸= zj for all i ∈ N \ {j}, then the play stops. This

is the case where only agent j has chosen non-participation.

At this terminal node t, the outcome function defines an action of the set of participants T (t) =

N \ {j} by at
T (t) = aN\{j}(R

j−1
N , xj(R

j−1
N )) where Rj−1

N is interpreted as Rn
N if j = 1.15 In words,

the outcome at this terminal node is such that participants take actions that prevent agent j from

β∗-blocking his least preferred allocation in φ(Rj−1
N ) where Rj−1

N is a preference profile reported by

another agent next to j.

Case 3. If neither case 1 nor 2 applies, then the play proceeds to phase 2–2. This is the case where

at least two agents have chosen non-participation.

Phase 2–1. This phase is reached when case 1 applies in phase 1. So, all agents are participants at

the beginning of this phase. Here, the β∗-core mechanism Γ is used as a component of the redesigned

mechanism Γ∗. All agents are asked to play a game in Γ with message spaces MN and an outcome

allocation function g. When the game in Γ reaches its terminal node, the play in Γ∗ also stops.

15We note that aN\{j}(R
j−1
N , xj(R

j−1
N )) is well-defined since xj(R

j−1
N ) ∈ φ(Rj−1

N ) ⊂ C∗(Rj−1
N ).

10

At each terminal node in Γ, the outcome function of Γ∗ defines actions of all agents so that the

resulting outcome allocation conforms to g.

Phase 2–2. This phase is reached when case 3 applies in phase 1. So, at least two agents are

non-participants at the beginning of this phase. Denote the set and the number of non-participants

at the beginning of this phase by S1 ≡ {i ∈ N : zi ≥ 1} and k̄ ≡ |S1|, respectively. Let agent i∗ be

the non-participant with the least index number among those who have reported the largest integer in

phase 1. That is, i∗ ≡ min{i ∈ S1 : i ∈ argmaxj∈S1 z
j}. Phase 2–2 consists of k̄ rounds described as

follows.

Round k ∈ {1,2, . . . , k̄ − 1}. Each non-participant i ∈ Sk is asked to report zik ∈ {0, 1}

sequentially from the non-participant with the least index number to those with larger ones.

If zik = 0, non-participant i is regarded as changing his mind and choosing to become a participant.

In this case, the set of non-participants is updated, i.e., Sk+1 ≡ Sk \ {i}, and the play proceeds to the

next round k + 1 even if some non-participants are not yet asked in the ongoing round k.

If zik = 1, non-participant i is regarded as choosing to remain a non-participant. If non-participant i

remains silent or his report does not conform to the rules, then he is regarded as choosing zik = 1 to

remain a non-participant. In this case, another non-participant j ∈ Sk with a next larger index number

is asked to report zjk ∈ {0, 1} in the ongoing round k.

Non-participant j is treated in the same way as non-participant i. If zjk = 0, he becomes a

participant and the play proceeds to the next round k + 1 with the updated set of non-participants

Sk+1 ≡ Sk \ {j}. If zjk = 1, another non-participant is asked in the ongoing round k. The play in the

round k continues similarly, either until the next round k + 1 is reached after some non-participant

chooses participation, or until all non-participants in Sk sequentially choose non-participation in a row.

The play stops in the round k without proceeding to the next round only when all non-participants

in Sk sequentially choose non-participation in a row, that is, only when zik = 1 for all i ∈ Sk. At this

terminal node t, the outcome function defines an action of the set of participants T (t) = N \ Sk by

at
T (t) = aN\Sk

(Ri∗
N , xi∗).16 In words, the outcome at this terminal node is such that participants take

actions that prevent a coalition of non-participants Sk from β∗-blocking xi∗ under Ri∗
N . In the special

case where T (t) = ∅ at the terminal node t, the outcome function associates nothing with the node

t since no agent is a participant at t. Such a case occurs only when S1 = N and the play stops in

round 1.

16We note that aN\Sk
(Ri∗

N , xi∗ ) is well-defined since xi∗ ∈ φ(Ri∗
N ) ⊂ C∗(Ri∗

N ).
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Round k̄. In this round, there remains only one non-participant i in Sk̄. He is asked to report

zik̄ ∈ {0, 1}.

If zik̄ = 0, non-participant i becomes the last participant and the play stops. In this case, all agents

have chosen participation in the end. At this terminal node t, the outcome function defines an action

at
T (t) of the set of participants T (t) = N so that h(at

T (t)) = xi∗ and the outcome allocation xi∗ is

realized.

If zik̄ = 1, non-participant i remains a non-participant and the play stops. At this terminal

node t, the outcome function defines an action of the set of participants T (t) = N \ {i} by at
T (t) =

aN\{i}(R
i∗
N , xi∗).

Theorem. Suppose that φ be a compact-valued sub-correspondence of the β∗-core. Let Γ∗ be

the redesigned mechanism obtained from a β∗-core mechanism Γ, for which we have the fact that

SPE(Γ, RN ) = φ(RN ) ⊂ C∗(RN ) ̸= ∅ for all RN ∈ RN . Then, the redesigned mechanism Γ∗, which has

Properties 1, 2 and 3, implements φ in subgame-perfect equilibrium. That is, SPE (Γ∗, RN ) = φ(RN )

for all RN ∈ RN .

This theorem is our main result. The following two sections prove the theorem.

3–2. Proof: SPE(Γ∗,RN) ⊂ φ(RN) for all RN ∈ RN .

Choose any arbitrary RN ∈ RN and fix it throughout this section. This RN is regarded as a ‘true’

preference profile of agents.

We first focus on subgames that start at the beginning of round 1 in phase 2–2. We note that

there are infinitely many such subgames because case 3 applies for infinitely many message profiles

reported in phase 1. Before any such subgame starts, the set of non-participants S1, the number of

non-participants k̄, and non-participant i∗ who has reported the largest integer are already given.

Lemma 1. For any subgame that starts at the beginning of round 1 in phase 2–2, if Ri∗
N = RN

and xi∗ ∈ φ(RN ), then the outcome allocation is xi∗ in the subgame-perfect equilibria of this subgame

given that the ‘true’ preference profile of agents is RN .

Proof. We use backward induction arguments to prove the lemma.

First, consider any subgame that starts at the beginning of round k̄ and take any subgame-perfect

equilibrium for this subgame. In round k̄, there remains only one non-participant i, who is asked to

report zik̄ ∈ {0, 1}.

12



－ 131 －

A solution to problems of non-participation in β＊-core mechanisms

Round k̄. In this round, there remains only one non-participant i in Sk̄. He is asked to report

zik̄ ∈ {0, 1}.

If zik̄ = 0, non-participant i becomes the last participant and the play stops. In this case, all agents

have chosen participation in the end. At this terminal node t, the outcome function defines an action

at
T (t) of the set of participants T (t) = N so that h(at

T (t)) = xi∗ and the outcome allocation xi∗ is

realized.

If zik̄ = 1, non-participant i remains a non-participant and the play stops. At this terminal

node t, the outcome function defines an action of the set of participants T (t) = N \ {i} by at
T (t) =

aN\{i}(R
i∗
N , xi∗).

Theorem. Suppose that φ be a compact-valued sub-correspondence of the β∗-core. Let Γ∗ be

the redesigned mechanism obtained from a β∗-core mechanism Γ, for which we have the fact that

SPE(Γ, RN ) = φ(RN ) ⊂ C∗(RN ) ̸= ∅ for all RN ∈ RN . Then, the redesigned mechanism Γ∗, which has

Properties 1, 2 and 3, implements φ in subgame-perfect equilibrium. That is, SPE (Γ∗, RN ) = φ(RN )

for all RN ∈ RN .

This theorem is our main result. The following two sections prove the theorem.

3–2. Proof: SPE(Γ∗,RN) ⊂ φ(RN) for all RN ∈ RN .

Choose any arbitrary RN ∈ RN and fix it throughout this section. This RN is regarded as a ‘true’

preference profile of agents.

We first focus on subgames that start at the beginning of round 1 in phase 2–2. We note that

there are infinitely many such subgames because case 3 applies for infinitely many message profiles

reported in phase 1. Before any such subgame starts, the set of non-participants S1, the number of

non-participants k̄, and non-participant i∗ who has reported the largest integer are already given.

Lemma 1. For any subgame that starts at the beginning of round 1 in phase 2–2, if Ri∗
N = RN

and xi∗ ∈ φ(RN ), then the outcome allocation is xi∗ in the subgame-perfect equilibria of this subgame

given that the ‘true’ preference profile of agents is RN .

Proof. We use backward induction arguments to prove the lemma.

First, consider any subgame that starts at the beginning of round k̄ and take any subgame-perfect

equilibrium for this subgame. In round k̄, there remains only one non-participant i, who is asked to

report zik̄ ∈ {0, 1}.

12

If zik̄ = 0 on the equilibrium path, then the outcome allocation is xi∗ as desired.

If zik̄ = 1 on the equilibrium path, then the outcome allocation is x′ ≡ h(at
i, aN\{i}(R

i∗
N , xi∗)) where

at
i is chosen by non-participant i for his own benefit at the terminal node t. Since non-participant i has

an opportunity to change his report into zik̄ = 0 and realize xi∗ but the equilibrium allocation is x′, it

must be the case that non-participant i weakly prefers x′ to xi∗ , that is, x′ Ri x
i∗ . By the definition of

aN\{i}(R
i∗
N , xi∗) and by the assumption Ri∗

N = RN of the lemma, we must have the fact that x′ = xi∗

as desired, because it is not the case that xi∗ Pi x
′.

Second, assume that it has been proved that the subgame-perfect equilibrium allocation is xi∗ for

every subgame that starts at the beginning of round k + 1, where k is some number in {1, . . . , k̄ − 1}.

Consider any subgame that starts at the beginning of round k and take any subgame-perfect equilibrium

for this subgame. In round k, each non-participant i ∈ Sk is asked to report z
i
k ∈ {0, 1} sequentially.

If zik = 0 for some i ∈ Sk on the equilibrium path, that is, if any one non-participant chooses to

become a participant in round k on the equilibrium path, then round k+1 is reached on the path. By

the induction assumption, the outcome allocation is xi∗ as desired.

If zik = 1 for all i ∈ Sk on the equilibrium path, that is, if all non-participants in Sk sequentially

choose non-participation in a row in round k on the equilibrium path, then the outcome allocation is

x′ ≡ h(at
Sk

, aN\Sk
(Ri∗

N , xi∗)) where at
Sk
is chosen by the non-participants in Sk for their own benefit at

the terminal node t. Note that each non-participant i ∈ Sk has an opportunity to change his report into

zik = 0 and reach round k+1 to realize xi∗ , which is, by the induction assumption, the subgame-perfect

equilibrium allocation of every subgame that starts at the beginning of round k + 1. Nevertheless, the

equilibrium allocation is not xi∗ but x′. So, it must be the case that every non-participant i ∈ Sk

weakly prefers x′ to xi∗ , that is, x′ Ri x
i∗ for all i ∈ Sk. By the definition of aN\Sk

(Ri∗
N , xi∗) and by

the assumption Ri∗
N = RN of the lemma, we must have the fact that x′ = xi∗ as desired, because it is

not the case that xi∗ Pi x
′ for some i ∈ Sk.

We next focus on the game (Γ∗, RN ) as a whole and its subgame-perfect equilibria. Three cases of

phase 1 are considered in Lemmas 2 through 4.

Lemma 2. Consider any subgame-perfect equilibrium m∗
N ∈ M∗

N of (Γ∗, RN ) and its outcome

allocation x ∈ SPE(Γ∗, RN ). If case 3 of phase 1 applies on the equilibrium path, then x ∈ φ(RN ).

Proof. When case 3 of phase 1 applies, at least two agents have chosen positive integers in phase 1.

In this case, every agent i has an opportunity to change his report of zi into an integer that is larger

13
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than any other agent’s, that is, zi such that zi > zj for all j ∈ N \ {i}. By reporting such zi, agent i

can reach a subgame that starts at the beginning of round 1 in phase 2–2 as agent i∗. Furthermore,

by reporting such zi together with Ri
N = RN and xi ∈ φ(RN ), agent i can realize xi, which is, by

Lemma 1, the subgame-perfect equilibrium allocation of the subgame in phase 2–2. Therefore, every

agent i has an opportunity to realize any allocation in φ(RN ).

Nevertheless, the equilibrium allocation is x. So, it must be the case that every agent i weakly

prefers x to any allocation in φ(RN ), that is, for all i ∈ N , we have x Ri x
′ for all x′ ∈ φ(RN ). Since

φ is a sub-correspondence of the β∗-core and any allocation in φ(RN ) is a β∗-core allocation, we must

have the fact that x = x′ for all x′ ∈ φ(RN ), that is, φ(RN ) = {x}.

Lemma 3. Consider any subgame-perfect equilibrium m∗
N ∈ M∗

N of (Γ∗, RN ) and its outcome

allocation x ∈ SPE(Γ∗, RN ). If case 1 of phase 1 applies on the equilibrium path, then x ∈ φ(RN ).

Proof. When case 1 of phase 1 applies on the equilibrium path, the play proceeds to phase 2–1

where the β∗-core mechanism Γ is played by all agents. So, the outcome allocation x is realized at

some terminal node in Γ. Since the strategy profile mN ∈ MN induced by m∗
N is a subgame-perfect

equilibrium for the subgame (Γ, RN ), it must be the case that g(mN ) = x ∈ SPE (Γ, RN ). Since Γ

implements φ in subgame-perfect equilibrium, we have the fact that x ∈ φ(RN ).

Lemma 4. Consider any subgame-perfect equilibrium m∗
N ∈ M∗

N of (Γ∗, RN ) and its outcome

allocation x ∈ SPE(Γ∗, RN ). If case 2 of phase 1 applies on the equilibrium path, then x ∈ φ(RN ).

Proof. When case 2 of phase 1 applies, there is only one agent j who has chosen a positive integer

in phase 1. In this case, agent j has an opportunity to change his report of zj > 0 into zj = 0 and

reach a subgame (Γ, RN ) that is played in phase 2–1. Let mN ∈ MN be the strategy profile induced

by m∗
N for the subgame (Γ, RN ), and let x′ be the allocation such that x′ = g(mN ). Since mN is a

subgame-perfect equilibrium for the subgame (Γ, RN ), it must be the case that x
′ ∈ SPE(Γ, RN ). Since

Γ implements φ in subgame-perfect equilibrium, we have the fact that x′ ∈ φ(RN ). Therefore, agent j
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prefers x to x′ ∈ φ(RN ), that is, for all i ∈ N , we have x Ri x
′. Since x′ is a β∗-core allocation, we

must have the fact that x = x′.

Lemmas 2 through 4 prove the following proposition.
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Proposition 2. We have the fact that SPE (Γ∗, RN ) ⊂ φ(RN ) for all RN ∈ RN .

3–3. Proof: φ(RN) ⊂ SPE(Γ∗,RN) for all RN ∈ RN .

Choose any arbitrary RN ∈ RN and fix it throughout this section. Take any x ∈ φ(RN ). We now

consider the game (Γ∗, RN ) and its subgames.

We first focus on subgames17 that start at the beginning of phase 2–1, where the β∗-core mechanism

Γ is played by all agents. Recall that at the beginning of Section 3–1, we have been given the mechanism

Γ that consists of the set of strategy profiles of all agents MN , the associated outcome allocation

function g : MN → X, and the set of participants at the initial node T = N . Since we have the fact

that SPE(Γ, RN ) = φ(RN ) and hence x ∈ SPE (Γ, RN ), we can choose a strategy profile mN ∈ MN for

(Γ, RN ) such that g(mN ) = x and mN is a subgame-perfect equilibrium for (Γ, RN ). We later use this

strategy profile mN to define a strategy profile for (Γ∗, RN ).

We next focus on subgames18 that start at the beginning of round 1 in phase 2–2. We call each of

such subgames subgame t where t is the initial node of this subgame, that is, t is the very first node

that is reached in phase 2–2. Let St
1 be the set of non-participants at the node t. Note that each

subgame t is a finite extensive game with perfect information, which is played by agents in St
1. So, by

the theorem due to Kuhn [1953], we can choose a strategy profile mt
St
1
for subgame t such that mt

St
1
is a

subgame-perfect equilibrium for subgame t. We later use this strategy profile mt
St
1
to define a strategy

profile for (Γ∗, RN ).

We now define a strategy profile m∗
N ∈ M∗

N for (Γ∗, RN ) as follows.

The strategy profile m∗
N ∈ M∗

N .

Phase 1. For each agent i, his report is such that (zi, Ri
N , xi) = (0, RN , x).

Phase 2–1. For each subgame that starts at the beginning of phase 2–1, the strategy profile

induced by m∗
N coincides with mN .

Phase 2–2. For each subgame t that starts at the beginning of round 1 in phase 2–2, the strategy

profile induced by m∗
N coincides with mt

St
1
.

Lemma 5. The strategy profile m∗
N is a subgame-perfect equilibrium for (Γ∗, RN ) and its outcome

allocation is x.

17We note that there are many such subgames depending on reports (Ri
N , xi)i∈N in phase 1.

18We note that there are many such subgames depending on reports (zi, Ri
N , xi)i∈N in phase 1.
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Proof. It is easy to see that the outcome allocation for the strategy profile m∗
N is x because for

this strategy profile, case 1 of phase 1 applies and the play proceeds to phase 2–1, where the strategy

profile mN is played in the β∗-core mechanism Γ.

We shall show that m∗
N is a subgame-perfect equilibrium for (Γ∗, RN ).

First, for each subgame that starts at the beginning of phase 2–1, the strategy profile induced by

m∗
N coincides with mN , which is a subgame-perfect equilibrium for this subgame.

Next, for each subgame t that starts at the beginning of round 1 in phase 2–2, the strategy profile

induced by m∗
N coincides with mt

St
1
, which is a subgame-perfect equilibrium for this subgame.

So, we are left to show that each agent i’s report (zi, Ri
N , xi) = (0, RN , x) is his optimal choice in

phase 1 given the strategies m∗
N\{i} of the other agents. Suppose that only agent j deviates unilaterally

and chooses (zj , Rj
N , xj) ̸= (0, RN , x). If zj = 0, then case 1 of phase 1 applies and the play proceeds

to phase 2–1, where the outcome allocation cannot be preferred to x = g(mN ) for agent j. If z
j ̸= 0,

then case 2 of phase 1 applies and the outcome allocation is x′ ≡ h(at
j , aN\{j}(RN , xj(RN ))) where at

j

is chosen by agent j for his own benefit at the terminal node t. Since x ∈ φ(RN ), we have the fact

that xRj xj(RN ) by the definition of xj(RN ). Furthermore, we have the fact that xj(RN )Rj x
′ by the

definition of aN\{j}(RN , xj(RN )). So, we obtain xRj x
′, which means that agent j cannot gain by the

deviation such that zj ̸= 0.

Discussions of this section prove the following proposition.

Proposition 3. We have the fact that φ(RN ) ⊂ SPE (Γ∗, RN ) for all RN ∈ RN .

Propositions 2 and 3 complete the proof of the theorem.

4. Conclusion

This paper has pursued a solution to problems of non-participation in a general allocation model. We

have proposed how to redesign β∗-core mechanisms to overcome non-participation problems.

Our redesigned mechanisms have the following properties that have been missed in mechanisms in

the standard literature. First, agents are given opportunities to show willingness not to participate in

β∗-core mechanisms, possibly by passing over such willingness in silence. Second, ‘non-participation

decisions’ are used as messages for the redesigned mechanisms. Third, the redesigned mechanisms

respect the rights of non-participants in the sense that the mechanisms never interfere with actions

of non-participants. In spite of these properties, the redesigned mechanisms can implement a sub-
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Proof. It is easy to see that the outcome allocation for the strategy profile m∗
N is x because for
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profile mN is played in the β∗-core mechanism Γ.

We shall show that m∗
N is a subgame-perfect equilibrium for (Γ∗, RN ).

First, for each subgame that starts at the beginning of phase 2–1, the strategy profile induced by

m∗
N coincides with mN , which is a subgame-perfect equilibrium for this subgame.

Next, for each subgame t that starts at the beginning of round 1 in phase 2–2, the strategy profile

induced by m∗
N coincides with mt

St
1
, which is a subgame-perfect equilibrium for this subgame.

So, we are left to show that each agent i’s report (zi, Ri
N , xi) = (0, RN , x) is his optimal choice in

phase 1 given the strategies m∗
N\{i} of the other agents. Suppose that only agent j deviates unilaterally

and chooses (zj , Rj
N , xj) ̸= (0, RN , x). If zj = 0, then case 1 of phase 1 applies and the play proceeds

to phase 2–1, where the outcome allocation cannot be preferred to x = g(mN ) for agent j. If z
j ̸= 0,

then case 2 of phase 1 applies and the outcome allocation is x′ ≡ h(at
j , aN\{j}(RN , xj(RN ))) where at

j

is chosen by agent j for his own benefit at the terminal node t. Since x ∈ φ(RN ), we have the fact

that xRj xj(RN ) by the definition of xj(RN ). Furthermore, we have the fact that xj(RN )Rj x
′ by the

definition of aN\{j}(RN , xj(RN )). So, we obtain xRj x
′, which means that agent j cannot gain by the

deviation such that zj ̸= 0.

Discussions of this section prove the following proposition.

Proposition 3. We have the fact that φ(RN ) ⊂ SPE (Γ∗, RN ) for all RN ∈ RN .

Propositions 2 and 3 complete the proof of the theorem.

4. Conclusion

This paper has pursued a solution to problems of non-participation in a general allocation model. We

have proposed how to redesign β∗-core mechanisms to overcome non-participation problems.

Our redesigned mechanisms have the following properties that have been missed in mechanisms in

the standard literature. First, agents are given opportunities to show willingness not to participate in

β∗-core mechanisms, possibly by passing over such willingness in silence. Second, ‘non-participation

decisions’ are used as messages for the redesigned mechanisms. Third, the redesigned mechanisms

respect the rights of non-participants in the sense that the mechanisms never interfere with actions

of non-participants. In spite of these properties, the redesigned mechanisms can implement a sub-
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correspondence of the β∗-core in subgame-perfect equilibrium.

In our redesigned mechanisms, the prefix component consisting of phases 1 and 2–2 plays an im-

portant role for inducing participation of agents. The component works as a device for prompting

cooperation among agents.

However, the component works properly only for β∗-core mechanisms. It is still unknown whether

there is a way to induce participation of all agents in mechanisms that aim to attain allocations not in

the β∗-core.
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