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Gradualism in voluntary contribution games

due to very small uncertainties

Yusuke Samejima

Abstract

We improve on the result by Samejima [2013] and show that in two-player voluntary contribution games as
analyzed by Compte and Jehiel [2003], very small uncertainties about opponent players’ valuations of completing
a project can cause gradualism in accumulation of contributions. Our study differs from Compte and Jehiel [2003]
in that our games are played in incomplete information environments where there is a chance for each player to
be either a high valuation type or a low valuation type. In such environments, Samejima [2013] shows that, if the
prior probability of the opponent player being a high-type is below a certain upper bound for both players, and if
players are sufficiently patient, there exists a perfect Bayesian equilibrium in which step-by-step contributions are
realized along the equilibrium path. This gradual accumulation of contributions is not observed in Compte and
Jehiel’s equilibrium in complete information environments. In the present paper, we remove the upper bound
condition on the prior probabilities in Samejima [2013]. Our result indicates that very small uncertainties about

valuations held by the opponent players can be a source of the gradualism.

1. Introduction

Contribution games have been studied in various aspects in the literature. Admati and Perry [1991] have
investigated games in which contributions for a joint project are sunk. They show that there exists a
subgame-perfect equilibrium in which contributions are made in small steps along the equilibrium path.
Such gradual accumulation of contributions is referred to as gradualism. Their result of gradualism is
obtained under the assumptions that a cost function for the project is arbitrarily convex and valuations
of the project are the same between two players. They have suggested that the sunk character of

contributions is a source of the gradualism.
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Revisiting Admati and Perry’s contribution games, Compte and Jehiel [2003] have pointed out
that their result of gradualism depends bn the convexity of the cost function and the symmetry of
the valuations. Compte and Jehiel have introduced a linear cost function and asymmetric valuations
into Admati and Perry’s contribution games, and show that there exists a unique subgame-perfect
equilibrium, in which at most two large contributions are realized. So, the gradualism observed in
Admati and Perry [1991] has disappeared due to the linear cost function and the asymmetric valuations.
In the proof of Compte and Jehiel’s result, they heavily use the assumption under complete information
environments: Each player knows his opponent’s valuation of the project.

Seeking after sources of gradualism, Samejima [2013] has introduced uncertainties about valuations
into Compte and Jehiel’s model.! In Samejima’s model, there is a chance for each player to be either
a high valuation type or a low valuation type. Each player is informed of his own valuation but not
of his opponent’s valuation: He just knows the prior probability of his opponent being a high-type.
Samejima shows that, if this prior probability is below a certain upper bound for both players, and if
players are sufficiently patient, then there exists a perfect Bayesian equilibrium in which step-by-step
contributions are realized along the equilibrium path.

In the present paper, we improve on the result by Samejima [2013]: We remove the upper bound
condition on the prior probabilities. We regard this condition as a limitation to some extent because
the upper bound becomes lower as the difference between the valuations held by a high-type and a
low-type becomes larger.

To illustrate the limitation imposed by the upper bound condition, we briefly discuss the model.
Suppose that two agents 1 and 2 want to complete a joint project that requires a total amount K of
contributions. On completion of the project, each agent obtains a benefit, which is either a high value
H or a low value L. Each agent ¢ knows the prior probability P; of his opponent j being a high-type.
The condition K < 2L is assumed so that completing the project is efficient even if both agents are low-
types. Samejima [2013] shows that there is an equilibrium in which two agents contribute alternately
in small steps until the project is completed if P; < 2L/(H + L) for i = 1,2, where the right hand side
of the inequality is the upper bound. For example, given K = 99, H = 150, and L = 50, the upper
bound is 1/2, which is in fact a limitation.

However, the present paper has succeeded in removing the upper bound condition. According to

! Miyagawa and Samejima [2009] have also introduced uncertainties about valuations into Compte and Jehiel’s
model. In their model, one player has a chance to be either a high valuation type or a zero valuation type,
and the other player has a chance to be either a low valuation type or a zero valuation type. So, their way of
introducing uncertainties differs from that of Samejima [2013].
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Gradualism in voluntary contribution games due to very small uncertainties

our result, even if P, = 0.9999 and P> = 0.0001, that is, even if agent 1 is almost a high-type and
agent 2 is almost a low-type but there still remain very small uncertainties, and if agents are sufficiently
patient, then there exists a perfect Bayesian equilibrium in which step-by-step contributions are realized.
Furthermore, for any contribution sequence, we can find an equilibrium that realizes the contribution
sequence up to the step just before the last step for completing the project.

Since any contribution sequence can be realized along some equilibrium path in our model, there is
a chance that almost equal cost-sharing is achieved. This is a big difference from the result by Compte
and Jehiel [2003]: If there are no uncertainties about valuations held by the opponent players, then
unfair cost-sharing is realized in most cases. For the above numerical example, if agent 1 is a high-
type and agent 2 is a low-type with no uncertainties, then agent 1 bears all the costs K and agent 2
contributes nothing in the unique subgame-perfect equilibrium. This cost-sharing is unfair.

The remaining part of this paper is organized as follows. Section 2 explains a model of two-player
contribution games under incomplete information. Section 3 proves that there exists a perfect Bayesian

equilibrium in which gradualism is observed. Section 4 provides some concluding remarks.

2. The Model

We investigate two-player voluntary contribution games similar to the ones studied by Compte and
Jehiel [2003].

Two agents, agents 1 and 2, are the players of the game. They contribute alternately to complete
a project, which costs K > 0. Upon an immediate completion of the project, agent 7 obtains a benefit
Vi, which is called agent i’s valuation of the project. At the beginning of the game, the nature decides
whether each agent i’s valuation is a high value H or a low value L, that is, Vi € {H,L} where
H > L > 0. So, agent i’s valuation V; also represents his type: Agent i with V; = H is a high-type and
agent ¢ with V; = L is a low-type. Let P; € (0,1) denote the prior probability that V; = H is drawn by
the nature. We assume that P; and P are independent. Furthermore, we assume that P; and P, are
common knowledge while the realized value of V; is known only to agent i.

The game is played in periods t = 1,2, ..., where agent 1 moves in periods with odd numbers while
agent 2 moves in periods with even numbers until the project is completed. Let m(t) denote the mover
in period t, that is, m(t) = 1 if ¢ is a positive odd number while m(t) = 2 if ¢ is a positive even number.
Let ci > 0 denote the amount of contribution by agent i in period t. Since two agents take turns in
making contributions, ¢! = 0 if i # m(t): This constraint on (c},ch) together with ¢§ = ¢ = 0 for

notational convenience is called the feasibility for (ci,ch). At the end of period ¢, (ci,cb) is observed
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by both agents. Let .
o' =K - (] +¢c3)
=0

be the remaining amount necessary for completion of the project at the end of period ¢t. Note that
z° = K and (2°,z',2%,...) is a non-increasing sequence. When the remaining amount reaches 0, the
project is completed and the game ends. Let T denote the period of completion of the project, that is,
T is the least natural number that satisfies the condition 7 < 0. If the project is not completed forever
due to an insufficient amount of contributions, then we let T = oco. We assume that contributions are
non-refundable even if the project is not completed. So, contributions become sunk costs for agents.

Let b = (2%, 2',...,2'"") denote a history at the beginning of period t. We denote h'*! by (ht,z*).
Agent i’s behavior strategy s; is a function that specifies a probability distribution over contribution
amounts for each type of i and for each history: s;(ct|V;, k') is the probability of choosing c! given V; and
Bt = (2% z',...,2""") with '~! > 0.2 By the feasibility for (c!,c}), we require that s;(0|V;, ht) = 1 if
i # m(t).

On reaching a history k' = (2% z,...,2'"!) with '~ > 0, agent i holds a belief p;(h?), which
represents the probability that agent i assigns to the event where his opponent is a high-type given h'.
We call p; agent i’s belief function. Given the common prior (Pi, P;), we assume that p; (k') = P, and
p2(h') = P1.

Both agents discount benefits and contributions using a discount factor § € (0,1). When agent i’s

type is V4, his payoff for a contribution sequence ¢ = {(c}, c5)}{—o is given by

Ui(Vi.c) =677V — iét_lcf.
t=0

We assume that agents maximize expected payoffs. Let u;(s|V;, h', p;) be the expected payoff of agent i
with type V; under a strategy profile s = (s1,s2) on condition that he reaches a history h* with a belief
pi(h).

We look for perfect Bayesian equilibria of the game. We follow Fudenberg and Tirole [1991a, 1991b]
for the definition of the equilibria. In the present model, a perfect Bayesian equilibrium (s,p) is a pair
of a strategy profile s = (s1, s2) and a belief function profile p = (p1, p2) that satisfies the following two

conditions.

Sequential Rationality. For all h, i = m(t), j # i, V;, and s}, we have u;(s|Vi, h?, p:) > wi((s}, 8;)|Vi, hY, pi).

2For the definitions of strategies and belief functions, we require that z:~! > 0 because otherwise, the game
must have ended before period t.
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Gradualism in voluntary contribution games due to very small uncertainties

Reasonability. Bayes’ rule is used to update beliefs whenever possible: For all i, j # 4, ht = (z°,...,z'™1),

and (c}, cb) satisfying the feasibility. if p;(h*)s;(c5|H.h") > 0 or (1 —pi(h*))s;(c5|L.h*) > 0. then

((ht fl)t)) — p7(ht)81(c§|H’ ht)
AN pi(h)s; (S TH ht) + (1 — pi(h*))s;(ch|L, ht)

where zf = 27! — (¢} + c}) > 0.

We note that the reasonability condition does not impose any constraint on agent i’s belief p; ((h, z*))
if s;(cj|H,h") = s;(c5|L.h*) = 0. That is. if it is agent j that moves at h' and if j chooses c} that
should have zero probability for both types of j according to s;, then agent i's belief at h'*! = (h, z")

can be completely arbitrary.

3. The Result
Let P; € (0,1) be given for ¢ = 1,2. We assume that K < 2L, which means that even if both
agents are low-types, total benefits exceed the cost. Choose any contribution sequence {(ct, Eé)}ﬁ;o
satisfying the feasibility and the following conditions: & > 0 if i = m(t), Zle & < L for all 4, and
S (@ + &) = K. Define a history R = (2°,z',...,z") corresponding to {(}.2)}i—o. Since
-1

g+ >0fort=1,2,....t, whave K =2°>z! > ... > 77! > z = 0. Furthermore, define a

history hf = (z°.&',...,&'" 1) corresponding to {(c}. 52)}5;(1,. Note that the project is not completed
on reaching the history hf. We want to show that there exists an equilibrium in which the history
Rt is realized along the equilibrium path. That is, we want to show that there exists an equilibrium
that realizes the contribution sequence {(53,55)}{;5. which may exhibit gradualism since the choice of

{(c%, &)}, is arbitrary to a certain extent.

Theorem. If 6 € (0,1) is sufficiently large. then there exists a perfect Bayesian equilibrium (s, p)

in which the history Rt is realized along the equilibrium path.

To prove the theorem, we first choose 8 € (0, 1) satisfying the following conditions for all ¢ and V;.

K < 8Vi+dL+(1-46)(1-0)H, (1)

d+eb > (1-5Y)H. (2)
t

STV (1-8)H) =Y 6 > &(Vi—L)forallt=12,... 1, (3)
T=t
t

STV —(1=8H) - &' > Vi+(1-8)H-z"lforallt=1,2....i—1. (4)
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Lemma 1. If§ € (0,1) is sufficiently large, then & satisfies all the conditions (1) — (4) for all i and
Vi.

Proof. The right hand side (RHS, henceforth) of the inequality (1) converges to V;+L as & converges
to 1. Since K < 2L < V; + L, the condition (1) holds for large 8.

As for the inequality (2), RHS converges to 0 as & converges to 1. Since & +a>0 by the choice
of {(&,e)}_o, the condition (2) holds for large 4.

As for the inequality (3), we consider the left hand side (LHS, henceforth) subtracted by RHS. As

J converges to 1, (LHS — RHS) converges to

Vi-Y &) -i-L=0-Y ¢,

T=t

which is positive since Z:_:l ¢t < L by the choice of {(¢},25)}f_o. So, the condition (3) holds for large 3.

As for the inequality (4), we note that as § converges to 1, (LHS — RHS) converges to the following:

t t—1 t t t t
S g = (k-3 @F+E)-S d= (K-S E+EN+> 5= 2.
T=t 7=0 T=t =0 T=t T=t
Since we may assume t < £—1 for the inequality (4), we have Ei:t €} > 0 by the choice of {(&}, Eﬁ)}ﬁ;o.

So, the condition (4) holds for large é. 0

We next define a strategy profile s = (s1, s2) and a belief function profile p = (p1, p2). Recall that
si(ct|Vi, h') represents the probability of choosing ¢! > 0 given V; € {H, L} and h' = (2°,2!,...,2'™")
with £'=! > 0. We also recall that p;(h') represents the probability that agent  assigns to the event
where his opponent is a high-type given h’.

To describe the strategies and the belief functions, let us define a deviator function d(h') as follows.
Given a history hf = (mo,xl,...,zt_l) with 27! > 0, if & = z" forall 7 = 0,1,...,¢t — 1, then let
d(h') = 0; Otherwise, let d(h') = m(#) where 7 is the least 7 that satisfies ™ # Z". If d(h!) = 0, then
we say that h® is on-path and there is no deviator; Otherwise, we say that h' is off-path and agent d(h')
is the deviator. If h' is off-path and i # d(h'), then we call agent i the punisher. We note that if h® is

off-path, it must be the case that t > 2 because h! is always on-path due to the fact that z° = z° = K.

Strategy s; for i =1, 2.

Let V; € {H,L} and h* = (°,z*,...,2""') with 2!~! > 0 be given. When i # m(t), we require
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Gradualism in voluntary contribution games due to very small uncertainties

that s;(0|V;i, ht) = 1 3 by the feasibility for (cf,ch). When i = m(t), the following descriptions define
si(-|Vi, hY).
The on-path case. If d(h') = 0, then we define s;(-|V;, h') as follows.*
If t <t—1, then let s;(c{|V;,h*) = 1 for ¢} = &}.
Ift =fand V; = H, then let s;(c|Vi, h') =1 for ¢! = &.°
If t =% and V; = L, then let s;(ct|Vi,h!) =1 for ¢! = Ef -(1- S)H.6
The deviator’s case. If i = d(h'), then we define s;(-|V;, h') as follows.
If Vi = H and zt7! < 83L + (1 — 6%)H, then let s;(ct|Vi, ht) =1 for ¢t = 2t~ L.
If Vi = H and 27! > 6°L + (1 — 6°)H, then let s;(c}|Vi.ht) =1 for ¢t = 0.
If Vi = L and z'~! < (1 — §)L, then let s;(ct|Vi, h*) =1 for ¢t = z'~ 1.
If Vi=Land (1-48)L <z'™! < (1 —68)H, then let s;(ct|Vi,ht) =1 for ¢! = 0.
IfVi=Land (1-8)H < z'~' < 6L+ (1—-08)H, then let s;(c|Vi,h') =1 for ¢t = '~ — (1-6)H.
If Vi = L and 2'~! > 6L + (1 — §)H, then let s;(ct|Vi,h') =1 for cf = 0.
The punisher’s case. If h' is off-path and i # d(h'), then we define s;(-|V;, h') as follows.
If 27! < (1 — 8§)H, then let s;(ct|Vi,h*) =1 for ¢t = z'~ 1.
If (1-8)H < z'™!' < 8L+ (1—48)H, then let s;(ci|V;, h') =1 for ¢} = 0.
If 27! > 6L + (1 — §)H, then let s;(ct|V;,h') =1 for ¢} = 2** — §L — (1 — §)H.

Belief function p; for i =1,2.

Let ht = (2%, z!,...,2'"") with £'~! > 0 be given. For ¢t = 1, let p1(h') = P, and pa(h') = Pi.
For t > 2, we define p;(h') as follows. When i = m(t — 1), let p;(h') = p:(h*™'). When i = m(t), the
following descriptions define p;(h').

The on-path case. If d(h') = 0, then let p;(h') = P; where j # i.

The deviator’s case. If i = d(h'), then let p;(h') = P; where j # i.

The punisher’s case. If h' is off-path and i # d(h"). then define p;(h') as follows.
If 27 < (1 — §)H, then let p;(h*) = 0.
If (1-06)H < zt™! <L+ (1 —8)H, then let p;(h') = 1.
If 271 > 6L + (1 — 6)H, then let p;(h') = 0.

3This expression implicitly states that s;(ct|V;, ht) =0 for ¢t > 0.
4The following three cases are exhaustive because if t > , then it must be the case that d(ht) # 0.

5Note that Eg = #i~1 by the definitions of ! and {(e, Eé)}f=0'

6We note that Eﬁ_ —(1-08)H > Ef — (1 — 8%)H > 0 due to the condition (2) in Lemma 1 together with the
fact that ¢ = 0 in this case.
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We now prove that (s, p) satisfies sequential rationality in the series of lemmas. Take any i € {1, 2},
V; € {H,L}, t€{1,2,...}, and h = (z° z',...,2*"") with 2'~! > 0, and fix them for the arguments
in Lemmas 2 through 13. Let {(cf, cg)}i;lo be the contribution sequence corresponding to h'. When
we consider a contribution sequence for period ¢t and beyond, {(c{,cg)}f=t, we denote the combined
sequence by ¢ = {(c],c})}_, for notational convenience. We assume that c satisfies the feasibility,
and we note that, by its construction, c is consistent with h’.

Let 3; be agent i’s optimal strategy on condition that (s;, Vi, k%, p;) is given:

5 € argm§xui((s§,sj)]Vi,ht,pi).

i

We want to show that u;(s|Vi, h*,pi) > ui((3i,8;)|Vi, h',pi) in exhaustive cases, which implies that

ui(s|Vi, b, pi) > ui((si, 85)|Vi, k', pi) for all s}
J

Lemma 2. When agent i moves given an off-path history, that is, when h' is off-path and i = m(t),

and if 71 < (1 = 8)V;, then wi(s|Vi, ht,pi) > ui((5i. ;) |Vi, ht, ps).

1

Proof. When agent i follows s;, he chooses ¢! = z!~! with probability one in period t regardless of

his type and whether he is the deviator or the punisher, and the game ends with his payoff
t—1
wi(s|Vi, ', pi) = 87 (Vi — 2 = 38
=0

Let ¢ = {(cT,c})}_o be such that positive probability is assigned to ¢ by the probability distri-
bution generated by p;(h') and (3;,s;) given h*. We show that agent i’s payoff for ¢ does not exceed
ui(s|V;, ht, p;) in exhaustive cases, which implies that u;(s|Vi, ht,p;) > wi((5:, 85)|Vi, bt pi).

If ¢! > z'~!, then the game ends in period t according to ¢, and we have

t—1 t—1
UiVire) =87 (Vi — ) = 3081 <8I (Vi -2 ) = 08N = wisl Vi b ),

=0 7=0

where the weak inequality holds since ¢! > z*~1.

! _ ¢t according to c. In this case, the most

If ¢t < 2'7!, then the game continues with zf = z'~
preferred scenario for agent ¢ is that agent j contributes all the remaining amount z* and completes

the project in period (¢ + 1). Even if this scenario applies to c,
t—1

t—1
Ui(‘/i,C) = St_l(g‘/i - Cf) - ZST_lCiT S St_l(‘/i - It_l) - ZST—IC;" = Ui(sl‘/i,ht,pi),
=0

=0
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Gradualism in voluntary contribution games due to very small uncertainties

where the weak inequality holds since ¢! > 0 and 2'~! < (1 — §)V;. O

Lemma 3. When agent i moves as the deviator. that is, when i = m(t) = d(h') # j, and if V; = H

and (1 —8)H < 2™ < 6L+ (1 —8)H, then u;(s|Vi. h*,p:;) > ui((5:. 5;)|Vi, ht, ps).

1

Proof. When high-type deviator i follows s;, he chooses ¢! = z*~! with probability one in period ¢

and the game ends with his payoff

t—1
wi(s|H, k' ,p;) =6"""(H —2'"") — Zgr—lcf.
=0
Let ¢ = {(c].c5)}¥_, be such that positive probability is assigned to ¢ by the probability distribution
generated by p;(h*) = P; and (&;, s;) given h'. We show that deviator 7’s payoff for ¢ does not exceed
u;(s|H, k', p;) in exhaustive cases, which implies that u;(s|H, k", p;) > wi((5:, s;)|H, h', p:).

If the project is not completed according to ¢, that is, if Zfzo(cf +¢3) < K, then we have

T t—1 t—1 —
Ui(H,c) = - ZgT_lciT - ZST_lciT <0- ZY_ICI <&T'OL+(1-8)H -z - 557_103
=t =0 =0 =0
t—1
< &TYWH -z - ZST_ICZ = u;(s|H,h".p:),
=0
where the second weak inequality holds since z'~! < §L + (1 — §)H. So, in the remaining part of the
proof of the lemma, we consider the cases where the project is completed according to c.

We next show that ¢! > z'™!' — (1 — §)H. If 2™ > (1 — §)H for any 7 > t, then we have
z7 < 2'7!' < 6L+ (1 — §)H, and punisher j chooses c;'“ = 0 in period (7 + 1) as described in the
punisher’s case of the strategy because otherwise, zero probability is assigned to c. Since the project is
completed according to ¢ while punisher j never contributes as long as the remaining amount exceeds
(1 — 8)H, it must be the case that deviator i pays at least the difference between z'~! and (1 — §)H,
possibly in one time or in several times. If deviator ¢ should pay an amount necessary for reaching
some remaining amount # no more than (1 — §)H, it is optimal for him to do so in one time, because
punisher j's strategy does not depend on the path from z‘~! to Z but on the remaining amount # itself,
and because delaying completion of the project lowers the discounted benefit. Therefore. we must have
cd>zt" - (1-4)H.

If ¢¢ > 2'7!, then the game ends in period ¢ according to ¢, and we have

t—1 t—1

Ui(H.c) =38 (H—cl) =D 6 e <& NH-2""") =Y 6 "] = ui(s|H.h".p),

0 —n
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where the weak inequality holds since ¢t > z'~!.

If 2! > ¢t > 2'™' — (1 - §)H, the game continues with ' = 2*~! — ¢! < (1 — §)H according to c.

t+1

Then, punisher j chooses ¢;™" = z' in period (¢t + 1) as described in the punisher’s case of the strategy

because otherwise, zero probability is assigned to c. So, the game ends in period (¢ + 1), and we have

t-1 ¢—1
Ui(H,c) = 6" (6H — ¢}) — ZE"“CZ <§TYWH -2 - ZS"%{ = ui(s|H, h,p;),

7=0 =0

where the weak inequality holds since ¢! > z'~! — (1 — §)H. O

Lemma 4. When agent i moves as the deviator, that is, when i = m(t) = d(h') # 4, and if V; = H
and L+ (1 = 8)H < 7' < &L+ (1 — 8°)H, then ui(s|Vi, ht.pi) > wi((5:, 8)|Vi, h, pi).

1

Proof. When high-type deviator i follows s;, he chooses ¢i = z*~! with probability one in period ¢

and the game ends with his payoff

t—1
wi(slH B pe) = 87 (H =27 = 3577

T=0

Let ¢ = {(c], c§)}¥—o be such that positive probability is assigned to ¢ by the probability distribution
generated by p;(h') = P; and (;, s;) given h'. We show that deviator i’s payoff for ¢ does not exceed
ui(s|H, h',p;) in exhaustive cases, which implies that wu;(s|H, h*, p;) > u:((5:, ;)| H, ht, p;).

If the project is not completed according to c, that is, if Zfzo(c’{ + ¢3) < K, then we have

Ui(H,c) = Za* ! T—Zaf er<o- 25* Tl <87 Za* YeT = wi(s|H, b, p;).

T7=0

where the strict inequality holds since ™! < §°L + (1 — §°)H < H. So, in the remaining part of the
proof of the lemma, we consider the cases where the project is completed according to c.

If ¢t < a'~'—6L—(1—68)H, the game continues with z! = 2'~! — ¢! > 5L+ (1—8)H according to c.
Then, punisher j in period (¢ + 1) chooses c;."'l =z' — 8L — (1 —8)H as described in the punisher’s case
of the strategy because otherwise, zero probability is assigned to c. According to ¢, the game further
continues with £**' = §L + (1 — §)H. For the continuation game from period (¢ + 2), it is optimal for

high-type deviator i to follow s; by Lemma 3. So, we have
t+1

Ui(H,c) < wi(s|H, (k' 2" 2""), p;) = 8" (H — ') — Zgr_lc;'

T7=0
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t—1

= §"NH —5L— (1-8)H)—c*! E:ylg<y1WH BL) - zyTlr
=0 T=0
< FNH -2t Z(gr ‘el = ui(s|H.h'.pi),

where the weak inequality on the second line holds since ¢! > 0 and c¢it! =

=0, and the weak inequality
on the third line holds since z~! < §*L + (1 — 6°)H

If ¢t > 2! — §L — (1 — §)H, then the same arguments as in the proof of Lemma 3 can show that
ct > z'~! — (1 — §)H. Furthermore, by repeating the arguments in the proof of Lemma 3 for the cases

ct >zt and 27! > ¢ > 2! — (1 — §)H, we obtain U;(H,c) < ui(s|H, ht,p;). O

Lemma 5. When agent i moves as the deviator. that is. when i = m(t) = d(h') # j, and if V; = H
and £ > 83L + (1 — %) H, then uw:(s|Vi, h*,pi) > ui((5:. ;)| Vi, ht. ps).

Proof. When high-type deviator i follows s;. he chooses ¢! = 0 with probability one in period t and
the game continues with 2 = 2'™! > §°L + (1 — §*)H > 6L + (1 — §)H. When punisher j follows s;
given h'*! = (h*,z"). he chooses c{*! = z' — §L — (1 — §)H with probability one in period (¢ + 1) as
described in the punisher’s case of the strategy. The game further continues with z*+! = §L+ (1 —-8)H,

+2 t+1

and high-type deviator i, following s; given h'*? = (h*,z'. z'*1), chooses c! with probability

one in period (¢t + 2) and the game ends. So, we have

wi(s|H,h',pi) = &' (6*H —8%') — Sgr—ld
=0 .
= §'Y6*H — 8*(6L + (1 — 8)H)) Za* Ll =8N H - L) = 8 el
=0
Let ¢ = {(c],c})}._, be such that positive probability is assigned to ¢ by the probability distribution
generated by p:(h') = P; and (5:.s;) given h'. We show that deviator i's payoff for ¢ does not exceed
ui(s|H.h'.p;) in exhaustive cases, which implies that u;(s|H, h',p;) > u;((5:,s;)|H, h', p;).

If the project is not completed according to c, that is, if ZLO(CI +c3) < K, then we have

T t—1 t—1
—ZS =) 6T e <0- Za’ Yl <8N EPH-8L)=) 8 el = wi(s|H. b, py).

=0 =0 =0

So, in the remaining part of the proof of the lemma, we consider the cases where the project is completed
according to c.

If ¢¢ < z'~! — 8L — (1 — 8)H, then the same arguments as in the proof of Lemma 4 can show that
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't = 8L + (1 — §)H and

t41
Ui(H,c) < wui(s|H, (k' 2t '), p) =8 (H — 2zt — ZST_IC'[
=0
= SUH-SL-(Q1-8H) - —cf =) 5 e
=0
t—1
< St_l(SSH — 53L) — 677 el = wi(s|H, ht, pi),
=0

where the weak inequality on the third line holds since ¢! > 0 and ¢!*!' = 0.
If ¢t > 2'™* — 6L — (1 — §)H, then the same arguments as in the proof of Lemma 3 can show that
¢t > z'"! — (1 — §)H. Furthermore, by repeating the arguments in the proof of Lemma 3 for the cases

>z tand 2! > ¢t > 27! — (1 — §)H, we obtain

t—1 t—1
Ui(H,c) <8 7HH -2 ™') = > 87 'ef <8 1(8°H = 8°L) = Y 6" el = wi(s|H,h'.pi),

=0 =0

where the strict inequality holds since z*~* > 6°L + (1 — 6*)H. d

Lemma 6. When agent i moves as the deviator, that is, when i = m(t) = d(h') # j, and if Vi = L
and (1 —§)L < x'™' < (1 — 8§)H, then ui(s|Vi, ht,p:) > wi((5:, ;)| Vi, ht, ps).

Proof. When low-type deviator i follows s;, he chooses c! = 0 with probability one in period ¢ and
the game continues with 2* = z'~! < (1 — §)H. When punisher j follows s; given h'*! = (h*, ),

+1

he chooses c; = z! with probability one in period (¢t + 1) as described in the punisher’s case of the

strategy, and the game ends. So,

-1
ui(s|L, h',p;) = 8'L = 5" c].
=0
Let ¢ = {(c], c})}¥_, be such that positive probability is assigned to ¢ by the probability distribution
generated by p;(h') = P; and (5;, s;) given h*. We show that deviator i’s payoff for ¢ does not exceed
ui(s|L, h*,p;) in exhaustive cases, which implies that w;(s|L, h',p;) > u;((5:, s;)|L, h*, p:).

If ¢! > z'~!, then the game ends in period ¢ according to ¢, and we have

t—1 t—1
Ui(Lye) =8N (L —ch) =Y 677 ] <8'L =) 8 'e] = uils|L,h',pi),

=0 =0

where the strict inequality holds since (1 — §)L < z*~! < ¢l
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Gradualism in voluntary contribution games due to very small uncertainties

If ¢¢ < zt7!, the game continues with z* = z'~? — ¢! < (1 —§)H according to c. Then, punisher j in

period (¢t + 1) chooses ¢;*! = x' as described in the punisher’s case of the strategy because otherwise,

J

zero probability is assigned to c. So, according to c, the game ends in period (¢ + 1), and we have

t—1 t—1
Ui(L.c)=8""@OL—cl) =Y 8" '] <3'L—-> 5 'cf =ui(s|L.h".pi).
0

=0

-

Il

where the weak inequality holds since ¢! > 0. O

Lemma 7. When agent i moves as the deviator, that is. when i = m(t) = d(h') # j, and if V; = L
and (1 —8)H < '™ < 6L + (1 — 8)H. then u;(s|V;i, ht.pi) > ui((5:, 8;)|Vi, b, pi).

Proof. When low-type deviator i follows s;, he chooses ¢! = z'~! — (1 — §)H with probability one in
period t and the game continues with z* = (1 —§)H. When punisher j follows s; given h't! = (h*, zt),

+1

he chooses c; = z' with probability one in period (¢ + 1) as described in the punisher’s case of the

strategy, and the game ends. So,

t—1 t—1
ui(s|L. b, pi) =8 BL— (2" = (1= 8)H)) = > 5" el =3 OL+(1-8H -z =D 5 e
=0 T7=0
Let ¢ = {(c].c5)}*_, be such that positive probability is assigned to c by the probability distribution
generated by p:(h') = P; and (5;.s;) given h'. We show that deviator i's payoff for ¢ does not exceed
ui(s|L, h*,p;) in exhaustive cases, which implies that u;(s|L, k', p;) > wi((5:, s;)| L, h*, p:).

If the project is not completed according to c, that is, if ZLO(CI + ¢3) < K, then we have

t—1

T t—1
Ui(L,c) = _ZS"_ICI_ZST‘IC:50_25"_10:
T=t =0

T= =0

IN

-1
§"MOL+(1-6)H -zt - Z(V_lcf = w;i(s|L, k', p;),
—0

where the weak inequality on the second line holds since z'™' < §L + (1 — §)H. So, in the remaining
part of the proof of the lemma, we consider the cases where the project is completed according to c.
We next show that ¢! > z'=! — (1 = §)H. If " > (1 — §)H for any 7 > t, then we have
" <z ' < 6L+ (1 - 8)H, and punisher j chooses CJT-"'l = 0 in period (7 + 1) as described in the
punisher’s case of the strategy because otherwise, zero probability is assigned to c¢. Since the project is
completed according to ¢ while punisher j never contributes as long as the remaining amount exceeds

(1 — 8)H, it must be the case that deviator i pays at least the difference between z'~* and (1 — §)H,
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possibly in one time or in several times. If deviator i should pay an amount necessary for reaching
some remaining amount # no more than (1 — §)H, it is optimal for him to do so in one time, because
punisher j’s strategy does not depend on the path from z'~! to & but on the remaining amount # itself,
and because delaying completion of the project lowers the discounted benefit. Therefore, we must have
>z - (1-4)H.

If ¢! > 2'~!, then the game ends in period ¢ according to ¢, and we have

t—1 t—1
UiL,c) = & L-cf)— ZST—IC{ <& NL -2 — ZST_ICI
T=0 7=0
< STMOL+ (1 -8)H -2t = 67 el = wi(s|L. k' pi).
7=0
where the weak inequality holds since ¢! > z'~! and the strict inequality holds since L < 6L+ (1 —48)H.
Ifz'~! > ¢t > 2! — (1 — §)H, the game continues with z* = z'~! — ¢! < (1 — §)H according to c.

+1

Then, punisher j chooses c; = z' in period (t + 1) as described in the punisher’s case of the strategy

because otherwise, zero probability is assigned to c. So, the game ends in period (¢ + 1), and we have

t—1 t—1 :
Ui(L,c) = 8" '(6L — c}) — Zgr_lcf <& 'OL+(1-8H -z — Zsr_lcf = wi(s|L, h', ps),

T=0 =0

where the weak inequality holds since ¢! > z*~! — (1 — §)H. a

Lemma 8. When agent i moves as the deviator, that is, when i = m(t) = d(h') # j, and if Vi = L
and '™ > 6L + (1 — 8)H, then u;(s|Vi, h,pi) > ui((5:, ;)| Vi, hE, ps).

Proof. When low-type deviator i follows s;, he chooses ¢! = 0 with probability one in period t and
the game continues with 2* = 2!~ > §L + (1 — §)H. When punisher j follows s; given h'* = (h', z?),
he chooses c{*! = z' — §L — (1 — §)H with probability one in period (¢ + 1) as described in the
punisher’s case of the strategy. The game further continues with z'*' = §L 4 (1 — §)H, and low-type
deviator i, following s; given h'*? = (h', z!,2'*?), chooses c!t? = z'*! — (1 — §)H with probability
one in period (¢ + 2), and the game continues with z‘*? = (1 — §)H. When punisher j follows s; given
h*3 = (B, 2%, 2+ 2'+?), he chooses c;"'s = z'*? with probability one in period (t 4+ 3) as described

in the punisher’s case of the strategy, and the game ends. So, we have

t—1
wi(s|Lh'p) = §&TNEL- @ - (1-8H) - Y 5

=0
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Gradualism in voluntary contribution games due to very small uncertainties

st—l(SSL—SS 257- l‘{'_O Z(sr l‘r.

Let ¢ = {(c].c5)}—o be such that positive probability is assigned to ¢ by the probability distribution
generated by p:(h') = P; and (i, s;) given h*. We show that deviator i’s payoff for ¢ does not exceed
ui(s|L, ht.p;) in exhaustive cases, which implies that u;(s|L, h*, pi) > ui((5:. s5)|L, h*. p;).

If the project is not completed according to c, that is, if erzo(cI + ¢3) < K, then we have

t—1 t—1

67l ZtST ler<o-— Z(V Yel = ui(s|L, hY, ps).

t =0 T7=0

Me

Ui(L,c) = —

T

So, in the remaining part of the proof of the lemma, we consider the cases where the project is completed
according to c.

If ¢t < zt~'—5L— (1—8)H. the game continues with z' = '~ —¢c! > §L+ (1) H according to c.
Then, punisher j in period (¢ + 1) chooses c;.“ = 2! — 6L — (1 —8)H as described in the punisher’s case
of the strategy because otherwise, zero probability is assigned to c¢. According to c, the game further
continues with z**! = §L + (1 — §)H. For the continuation game from period (¢ + 2), it is optimal for

low-type deviator ¢ to follow s; by Lemma 7. So, we have

t+1

Ui(L,c) wi(s|L, (', 2", '), pi) = 8T (BL + (1 — §)H — z*T) Za*“

IN

t+1

0— Z(sr lc‘r<0 ZJT l‘r_ |Lhtpz)

where the weak inequality on the second line holds since ¢! > 0 and c{™! = 0.

If ¢t >« ! — 6L — (1 — 8)H, then the same arguments as in the proof of Lemma 7 can show that
¢t > z*~! — (1 — §)H. Furthermore, by repeating the arguments in the proof of Lemma 7 for the cases

¢t >zt land 87! > ¢f >zt~ — (1 — §)H, we obtain

t—1 t—1
Ui(L.o) S8 T'OL+ (1 —8)H — 271 =Y 67 '] <0—-> 8" "¢] = wi(s|L. h*.pi),
7=0 =0
where the strict inequality holds since z'=! > §L + (1 — §)H. O

Lemma 9. When agent i moves as the punisher, that is, when i = m(t) # d(h') = j, and if Vi = L
and (1 —8)L <zt~ < (1 — §)H, then u;(s|Vi, ', pi) > wi((5:, 85)|Vi, b, pi).

Proof. In this case, p;(h') = 0, so punisher i believes that deviator j is a low-type. When punisher ¢
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t t

follows s;, he chooses ¢! = 2*~! with probability one in period ¢ and the game ends with his payoff

t—1
wi(s|L, k! pi) =8 H(L — 2t — 257—10:.
=0

Let ¢ = {(c],c5)}¥—, be such that positive probability is assigned to ¢ by the probability distribution
generated by p;(h') = 0 and (5;,s;) given h'. We show that punisher i’s payoff for ¢ does not exceed
ui(s|L, h*, p;) in exhaustive cases, which implies that u;(s|L, h*, p;) > u:((5:, s;)|L, ht, p:).

If the project is not completed according to ¢, that is, if ZZ;O(CI + ¢3) < K, then we have

T t—1 t—1 t—1
U(L,c) = - ZET“IC{ - ZST_lc{ <0- Zgr_lcf <6 L-(1-08)H) - ZST_lc,T
T=t =0 =0 T=0
< THL -2 - Zér"lcf = u;(s|L,h'. pi),

=0

where the strict inequality on the first line holds since L > & + & > (1 — 62)H > (1 — 6)H by the
choice of {(&},c4)}{—o and by the condition (2) in Lemma 1, and the weak inequality on the second
line holds since ! < (1 — §)H. So, in the remaining part of the proof of the lemma, we consider the
cases where the project is completed according to c.

We next show that ¢! > z'™! — (1 —8)L. If 27 > (1 — §)L for any 7 > t, then we have
z7 <z'!' < (1-4)H, and low-type deviator j in period (7 4+ 1) chooses c;"'l = 0 as described in
the deviator’s case of the strategy because otherwise, zero probability is assigned to c. Since the
project is completed according to ¢ while low-type deviator j never contributes as long as the remain-
ing amount exceeds (1 — &)L, it must be the case that punisher 7 pays at least the difference between
z'=! and (1 — 8)L, possibly in one time or in several times. If punisher 7 should pay an amount nec-
essary for reaching some remaining amount # no more than (1 — §)L, it is optimal for him to do so in
one time, because low-type deviator j’s strategy does not depend on the path from z'~! to & but on
the remaining amount Z itself, and because delaying completion of the project lowers the discounted

benefit. Therefore, we must have ¢f > 2*~! — (1 — §)L.

If ¢! > z'~!, then the game ends in period t according to ¢, and we have

t—1 t—1
Us(L.c)=8"YL-¢c) - ZST_IC,T <THL -2 - Zgr_lcf = u;(s|L, h*, ps),

=0 T=0

where the weak inequality holds since ¢! > z*~1.

Ifz'=! > ¢t >zt~ — (1 — §)L, the game continues with ' = z'~! — ¢! < (1 — §)L according to c.
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Gradualism in voluntary contribution games due to very small uncertainties

+1 — 2t as described in the deviator’s case of the

Then, low-type deviator j in period (¢t + 1) chooses c;
strategy because otherwise, zero probability is assigned to c. So, the game ends in period (¢ + 1), and

we have

t—1 t—1
Ui(L.c)=8""@L—c) =Y 67 ef <3 ML —a'") = 6 el =wi(s|L,h',pa),
7=0

=0
where the weak inequality holds since ¢! > z*~! — (1 — §)L. O

Lemma 10. When agent i moves as the punisher, that is, when i = m(t) # d(h') = j, and if
(1—86)H <zt7 <SL+ (1 —06)H, then ui(s|Vi, ht, pi) > wi((5:, 5;)|Vi, B, ps).

Proof. In this case, p;(h') = 1, so punisher i believes that deviator j is a high-type. When punisher i
follows s;, he chooses ¢i = 0 with probability one in period ¢t and the game continues with z‘ = 2*~! <
SL+(1—-6)H < 8L+ (1—6%)H. When high-type deviator j follows s; given h**! = (h*, z'), he chooses

c;"'l = z' with probability one in period (¢ + 1) as described in the deviator’s case of the strategy, and

the game ends. So,
t—1

wi(s|Vi. h' . pi) = 6'Vi — ZST*ICZ.
7=0
Let ¢ = {(c], c5)}¥—o be such that positive probability is assigned to ¢ by the probability distribution
generated by p:(h') = 1 and (5;, s;) given h'. We show that punisher i's payoff for ¢ does not exceed
u;(s|Vi, ht, p;) in exhaustive cases, which implies that u;(s|Vi, h',p;) > wi((5:, ;)| Vi, hY, pi).

If ¢t > 2*~!, then the game ends in period t according to ¢, and we have

t—1 t—1
Ui(Vie) =8 (Vi—ch) = D877 < 8'Vi = > 677 el = wi(s|Vi, b, ).
T=0 7=0
where the strict inequality holds since (1 — 8)V; < 2!~ < ¢t
If ¢t < 2!, the game continues with 2" = 2'~! — ¢! < 5L+ (1 —8)H < 6°L + (1 — §°)H according

1 . . .
*1 = 2t as described in the deviator’s case

to ¢. Then, high-type deviator j in period (¢ + 1) chooses c;
of the strategy because otherwise, zero probability is assigned to c. So, according to ¢, the game ends

in period (¢ + 1), and we have

o~
[

1 t—1
Ui(Vie) =871 (Vi —cl) = D 87 ef <6'Vi—= ) 8" '] = ui(s|Vi. b pi).
0

T =0

where the weak inequality holds since ¢! > 0. O
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Lemma 11. When agent i moves as the punisher, that is, when i = m(t) # d(h') = j, and if

7' > 6L + (1 -08)H, then wi(s|Vi, A, pi) > wi((5:, 55) Vi, R, pi).

Proof. In this case, p;(h*) = 0, so punisher i believes that deviator j is a low-type. When punisher i
follows s;, he chooses cf = '~ —§L — (1—§)H with probability one in period ¢ and the game continues
with z* = 6L + (1 — §)H. When low-type deviator j follows s; given h**! = (h*,z*), he chooses

Ct4+1

o= x' — (1 — §)H with probability one in period (¢t + 1) as described in the deviator’s case of

the strategy. The game further continues with z**! = (1 — §)H, and punisher 4, following s; given
h'*2 = (h*, 2%, z'*"), chooses cit? = z'*! with probability one in period (¢ + 2) and the game ends.

So, we have

ui(s|Vi, ' p;) = 8718 (Vi— (1—8)H) — ("' = 5L — (1 -8)H)) — tis*—lc:
. =0
= §TNVi+ L+ (1-8)(1—-0)H —2'"") =) 5 el
=0
Let ¢ = {(c],c5)}¥—o be such that positive probability is assigned to ¢ by the probability distribution
generated by p;(h') = 0 and (5;,s;) given h*. We show that punisher i’s payoff for ¢ does not exceed
ui(s|V;, h', p;) in exhaustive cases, which implies that u;(s|Vi, B*, p:) > ui((3:, 85)|Vi, bt ps).

If the project is not completed according to c, that is, if Zf=0(cf + ¢3) < K, then we have

t—1 t—1

T
- 257_103 - ZST_ICZ <0- ZST_ICZ
T=t =0 0

Ui(Vi,c)

t—1
< STV L+ (1 - A -HH -K) =) 8 e

=0

IN

t—1
STHEVi4+SL+ (1= —0)H -2 ) = 67 el = uils|Vi, B py).
=0

where the strict inequality on the second line is due to the condition (1) in Lemma 1, and the weak
inequality on the third line holds since z'~! < K. So, in the remaining part of the proof of the lemma,
we consider the cases where the project is completed according to c.

We next show that ¢} > x'™' —§L — (1 —§)H. If £™ > §L + (1 — 8)H for any 7 > t, then low-type
deviator j chooses c;“ = 0 in period (7 + 1) as described in the deviator’s case of the strategy because
otherwise, zero probability is assigned to ¢. Since the project is completed according to ¢ while low-type
deviator j never contributes as long as the remaining amount exceeds (L + (1 — §)H), it must be the

case that punisher ¢ pays at least the difference between z'~' and (6L + (1 — §)H), possibly in one
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Gradualism in voluntary contribution games due to very small uncertainties

time or in several times. If punisher i should pay an amount necessary for reaching some remaining
amount Z no more than (6L + (1 — §)H). it is optimal for him to do so in one time. because low-type
deviator j’s strategy does not depend on the path from z'~! to & but on the remaining amount & itself,
and because delaying completion of the project lowers the discounted benefit. Therefore, we must have
>t 6L - (1-8)H

Ifz™' —(1-08)H >ct > 2! —3L — (1 — 8)H, the game continues with 2! = 2!~ — ¢! such that
(1-0)H < z' <6L+(1-6)H according to c. Given h'*! = (h',z"), low-type deviator j in period (t+1)

1 — ' — (1 —68)H as described in the deviator’s case of the strategy because otherwise, zero

chooses c}
probability is assigned to c¢. According to ¢, the game further continues with z‘*! = (1 — §)H. For the

continuation game from period (¢ + 2), it is optimal for punisher ¢ to follow s; by Lemmas 2 and 9. So,

t—1

Ui(Vice) < ui(s|Vi, (b, 2" @), pi) = 81 (8 (Vi— (1= 8)H) — ) = Y 67 ']
=0
t—1
< STNEVi-(1-8H) -2 T L+ (1-8)H) = > 5]

t—1
= §TNEVi+ L+ (1-8)A-0)H — ') = > 5 el = ui(s|Vi, b pi),

=0
where the weak inequality on the second line holds since ¢! > 2'~' — 6L — (1 — §)H.
If ¢ > z'™' — (1 — §)H, then the same arguments as in the proof of Lemma 9 can show that
¢t > z'~! — (1 8)L. Furthermore, by repeating similar arguments to the ones in the proof of Lemma, 9

t—1

for the cases ¢! > 27! and 2'™! > ¢! > '™ — (1 — §)L, we obtain

t—1

Ui(‘/i,C) S St_l(V[ _xt—l) _ ZST-IC;‘ S 5!—1(52% +( 62 Z(ST 1 ‘r
=0
< FT'PVi+(1-8)H -2 +6(L-(1-8)H 25* el

= &Y EVi4+46L+(1-8*)(Q1-8)H -z — ZSMC: = u;(s|Vi, h', p;),

where the second weak inequality on the first line holds since V; < H, and the strict inequality on the
second line holds since L > & + & > (1 — 62)H by the choice of {(¢,24)}¢— and by the condition (2)

in Lemma 1. O

Lemma 12. If agent i moves given an on-path history, that is, if i = m(t) # j and d(h') = 0, then
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ui(s|Vi, ht, p;) satisfies the following conditions:

t
If i = m(D), then wi(s|Vi,h',p;) = 6'Vi+6 (1 —-08)H— 257_16'{
=0
— —_ t_ -
> S (Vi—(1-08)H)-> & 'e. (5)
=0

If i # m(f), then u:(s|V;, ', p;)

Il

t
P Wit (1- P8 (Vi—- 1 =8)H) - > 67 'a
=0

> &(Vi-(1-8)H) - &, (6)
=0

Proof. When a history h' is on-path and agents i and j follow s; and s;, respectively, the game
continues along the path that realizes Rt = (z°,z, ... ,:Ez_l) until the beginning of period ¢. Now we
pay attention to the agent who moves in period %.

First, suppose that i = m(f). When agent i is a high-type, he chooses cf = Ef in period %, and the

game ends. So, we have

t t
ui(s|H,h',p;) =8 "H =Y 67 'e] =8'H+8'(1-8)H - ZST*&:,
T7=0

=0
which shows that the equality in the condition (5) holds for this case. When agent i is a low-type,
he chooses ¢ = & — (1 — 8)H in period £, and punisher j pays the remaining amount (1 — §)H in

period (£ + 1), and the game ends. So, we have

t—1 t
ui(s|L,hY,pi) = 8L =Y 8776 5N e - (1 - )H) =8 L+8T 1 -8H - & e,
=0 =0

which shows that the equality in the condition (5) holds for this case. The inequality in the condition (5)
holds since 6° (1 — 8§)H > —6°(1 — 8)H.

Second, suppose that i % m(f). It is agent j that moves in period f, so we have cf = 0. If agent j
is a high-type, he chooses cg» = Eg in period £, and the game ends. If agent j is a low-type, he chooses
CE = ég — (1 — 8)H in period £, and punisher ¢ pays the remaining amount (1 — §)H in period (£ + 1),
and the game ends. Since agent i holds a belief p;(h*) = P; given the on-path history h‘, we obtain

3

wi(s|Vi, ', pi) = P8 Vi + (1= P (Vi — (1= 8)H) - 6",

=0

which shows that the equality in the condition (6) holds. The inequality in the condition (6) holds
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since 671V, > 61 (Vi — (1 — ) H). O

Lemma 13. If agent i moves given an on-path history, that is, if i = m(t) # j and d(h*) = 0, then
ui(s|Vi, bt pi) > wi((5i, s5)| Vi, hY, pi).

Proof. Throughout this proof, suppose that agent j follows s;. By Lemma 12, we have

t
wi(s|Vi, At pi} > 8 (Vi — (1 — 8)H) — ZSM@: > 8 (V; — L) >0,

=0

where the second strict inequality is due to the condition (3) in Lemma 1, evaluated at ¢t = 1, together
with the fact that ¢? = 0.

Let ¢ = {(c],c5)}¥-, be such that positive probability is assigned to ¢ by the probability dis-
tribution generated by p;(h') = P; and (3;,s;) given h'. We show that agent i's expected pay-
off for contribution sequences does not exceed u;(s|Vi,h',p;) in Case 1, and agent i’s payoff for
the contribution sequence c does not exceed wu;(s|Vi,h',p;) in the other cases; These imply that
ui(s|Vi. h*.pi) > wi((5i. 55)|Vi, B', pi).

If the project is not completed according to c, agent i's payoff does not exceed 0. which is less than
ui(8|Vi, h*,p;). So, in the remaining part of the proof of the lemma, we consider the cases where the
project is completed according to c.

Case 1: i #m(t) and ¢] = ¢ forall T <1{.

We note that ¢ = ¢} for all 7 < — 1 because otherwise, zero probability is assigned to c¢. So.
according to c. agent j in period ¥ moves given the on-path history. If he is a high-type, then c§ = 5§;
Otherwise, c;—» = Eg- — (1 — 8)H. From agent i’s viewpoint in period (£ — 1), given the conditions in
Case 1, the event c;—~ = Eg occurs with probability p;(h~!) = P; and the event c§ = 65 —(1—-8)H occurs
with probability (1 — P;).

We now consider agent i’s expected payoff U; for all the contribution sequences satisfying the
conditions in Case 1. If the event cg = Eg- occurs, then agent i’s payoff is 51— ZLO §T1ET. If the
event cg = Ef« — (1 —68)H occurs, then the game continues with 2! = (1 - 8)H and agent i moves as a
punisher in period (£ + 1); Since it is optimal for punisher ¢ to follow s; by Lemmas 2 and 9, agent 4’s

payoff in this event is at most 8¢ (Vi — (1 — 8)H) — Zf,=0 577'c. Therefore, we have

£ . B P
0 < P Vi = S8 ) + (1= PYG (Vi - (1= §)H) = . 877"eT) = wils|Vi. bt ),

=0 T=0
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where the last equality holds by the condition (6) in Lemma 12.

Case 2: i = m(t) and ¢] =¢] for all T < t.

We note that ¢} = ¢} for all 7 < ¢ because otherwise, zero probability is assigned to c. In this case,

agent ¢ in period  chooses cf = Ef_ and the game ends. So, we have

Ui(Vi,c) =

IA

f t
A S MR 1 (R L )| 7 S it

T=0 7=0

7
SVi4+ 8 A= 8)H =67 e = wils|Vi, k', pa),
=0

where the last equality holds by the condition (5) in Lemma 12.

Case 3: c¢] # ¢ for some T <1%.

Let 7 be the least T that satisfies ¢] # ¢/. Note that t < 7 < tand ¢] = ¢ forall 7 < 7 — 1.

We also note that c¢; = ¢} for all 7 < 7 — 1 because otherwise, zero probability is assigned to c. Let

R**! = (2%, 2',...,2") denote the history corresponding to {(c].c5)}7—o. If z7 > 0 and hence the

game continues, then agent 7 moves as the punisher in period (7 + 1) given T,

First, suppose that ¢] < 277 —6L — (1-8)H.” Since z* > 6L+ (1 —6)H and agent j moves as the

punisher in period (# + 1), we have 7! = §L4(1—8)H. Since agent i is the deviator in period (7 + 2)

and it is optimal for him to follow s; by Lemmas 3 and 7, deviator ¢’s payoff for ¢ satisfies the following:

41

Ui(H,c) <8 (H - 6L — (1-8)H) = > "¢ and Ui(L,c) <8 L—-5"1(L) - > 6" 'cl.

So, we obtain

Ui(‘/ivc)

IN

INA

<

B 741
7=0
7+1
STV =dL—-(1-8)Vi) = 8 ']
( t ( ) z) Z C;
=0

#—1
SV =0L—(1=8)Vi) =] =l =) 877
=0

-1
NV - 8°L) - Y &
=0
. o t X F-1
ST Vi (1 =08)H) =) &) = > 5 e
=7 =0

_ t
F(Vi-(=-8H)-> 6 el
7=0

ui(s|Vi, h', ps),

“When this inequality holds, it must be the case that z7~! > §L + (1 — §)H since cf>o.
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where the weak inequality on the third line holds since ¢[ > 0 and cf“ = 0 and ¢ = ¢; for all
7 < 7—1, and the strict inequality on the fourth line holds by the condition (3) in Lemma 1, evaluated
at t = 7 < t, and the strict inequality on the last line holds by Lemma 12.

Second, suppose that ¢/ > #7~! — 6L — (1 — §)H. Since z* < 6L + (1 — §)H and agent j moves
as the punisher in period (7 4 1), he will pay nothing as long as z* > (1 — §)H; But he will pay all
the remaining amount if z7 = (1 — §)H. By applying the same arguments as in the proof of Lemma, 7,
we can show that agent #’s payoff for ¢ does not exceed the value U; that he obtains by paying®

¢ = — (1 - 8)H in period 7:

Ui(Vi,o) Ui =8V =8 Ha™ 1 = (1-9) Z 5T

where we have applied ¢] = ¢; for all 7 < 7 — 1.
If #+ <t—1, then

-1
U = 5 '@0Vi+Q-80H -2 )= &'

t -1
< 5+—1(5t—?+1(vi —-(1-8)H) - ZE’”*&:) — ZST_IE:
T=7 7=0
. t
= FVi-(1-8H) - &

=0

< ui(s|Vi, h', pi),

where the first inequality is due to the condition (4) in Lemma 1, evaluated at t = 7 < £ — 1, and the
last inequality is due to Lemma 12.

If # = ¢, then it must be the case that i = m(t) since ¢! # & in Case 3. Furthermore, we have
F— -1 ~ - ~
‘I:K—Z:(ci+c2 =K - ch+02 =K-> (G +&)=ci+&=2a

T=0

by the definition of z7 ! and {(&,&})}{—o. So, we obtain

U, = §vi-8 @ -q-8H) -5 5§

8We note that ¢] = 27~!—(1—-8)H > Osince 7 < fandz™~! =z7~1 > -1 =l 4+ > (1-62)H > (1-8)H
by the condition (2) in Lemma 1.
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3
= SVi+dTi1-0)H-) &'
=0

= ui(s“/i’ht!pi)a

where the last equality holds by the condition (5) in Lemma 12. O
Proposition 1. A pair (s,p) satisfies sequential rationality.
Proof. Lemmas 2 through 13 show the result in exhaustive cases. O

We next prove that (s,p) satisfies reasonability in the series of lemmas. Take any i € {1,2},
t€{1,2,...},and At = (2% 2!,...,2*"!) with z*~! > 0, and fix them for the arguments in Lemmas 14
through 17. Let j # i and let {(c],c})}!Zh be the contribution sequence corresponding to hf. For

' =2 — (c} +cb) > 0 where (ci, ch) satisfies the feasibility, define a Bayesian-updated belief

Bt _t\y Pi(ht)sj(cﬂH’ht)
P ) = 0y G TH ) + (1 - pi Ry (L)

which is well-defined only if pi(h")s;(ci|H,h') > 0 or (1 — pi(h'))s;(c5|L, h*) > 0.

Lemma 14. Suppose that agent i moves in period t, that is, i = m(t). Forz' = z'™ ' —(ci4+c}) > 0

where (ci,ch) satisfies the feasibility, we have pZ((Rt,z!)) = p;((h!,zt)).
Proof. Since i = m(t), the feasibility requires that ¢§ = 0 and s;(cj|H, h') = s;(ct|L, k") = 1. So,

Bt b)) — pi(R*) o (pt

On the other hand, p;((k',z")) = p;(h') by the definition of p;(h'*') in the case where i = m(t). O

Lemma 15. Suppose that agent j moves given an on-path history h', that is, j = m(t) # i and
d(h') = 0. For z' = z'' — (c} + cb) > 0 where (ci,ch) satisfies the feasibility, if p2((ht.xt)) is

well-defined, then pP((h',z")) = p:((ht, zt)).

1 -1

Proof. By the definition of the on-path history h!, we have z'~! = z?
First, suppose that t < £ — 1. If pP((h',z")) is well-defined, then c; = & because otherwise,
s;(c5|H, h') = s;(c§|L, h*) = 0. Given such c}, we have = = 2"~ — (¢} +¢5) = z'. Since s,(ci|H,ht) =

sj(c5|L,h*) = 1, we must have pf ((h',z")) = p;(h*) = P;. On the other hand, p;((h,z*)) = P; by the
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definition of the belief function in the on-path case because the continuing history h**! = (h,z?) is
on-path. So, we have p2((h?, z")) = p:((R',z")).

Second, suppose that t = £. If p?((k*, z')) is well-defined, then we have either ¢} = &5 = 2" for the
case V; = H or ¢} = &5 —(1—8)H for the case V; = L because otherwise, s;(c|H,h') = s;(c5|L.h') = 0.
If ¢ = #'71, then z' = 0. which is inconsistent with our assumption that z* > 0. So, we have
¢t = ¢ — (1 - 8)H, and hence a* = (1 — §)H. Since s;(c§|H.h') = 0, we must have pP((h*,z")) = 0.
Furthermore, since z* # z =0, agent j is the deviator and agent ¢ is the punisher for the continuing

history h**! = (h',z!). By the definition of the belief function in the punisher’s case with z* < (1-6)H,

we have p;((ht,z%)) = 0. So, we have p? (h',z")) = pi((R', 2")). O

Lemma 16. Suppose that agent j moves as the deviator given an off-path history h', that is,
j=m(t) =d(ht) #i. Forzt=z'""—(ct+ch) > 0 where (ci.ch) satisfies the feasibility, if pf ((h',z"))

is well-defined. then p2 ((h*,z")) = pi((h',z")).

Proof. For the continuing history (h',z"). agent i moves as the punisher since i # d(h).

First, suppose that z!™! < (1 — §)L. If pP((h',2")) is well-defined, then c; = 2'~' because
otherwise, s;(cj|H, h*) = s;(ci|L,h*) = 0. Given such c§. we have z* = 0, which is inconsistent with
our assumption that z* > 0.

Second, suppose that (1 — &)L < z'™! < (1 — §)H. If p?((h',z')) is well-defined, then we have
either ¢} = z'~! for the case V; = H or ¢} = 0 for the case V; = L because otherwise, s;(c}|H, h') =
sj(c5|L,ht) = 0. If ¢§ = 2*", then ' = 0. which is inconsistent with our assumption that z' > 0. So,
we have ¢t = 0, and hence 2* = 2'~' < (1-38)H. Since s;(c}|H, k') = 0, we must have pf ((h*,z")) = 0.
On the other hand, p;((h*,z")) = 0 by the definition of the belief function in the punisher’s case with
z! < (1 —8)H. So, we have p?((h',z")) = p;((h',z")).

Third, suppose that (1 —8)H < z'~! < 5L+ (1 —8)H. If pP ((h',z")) is well-defined, then we have
either ¢! = z'~! for the case V; = H or ¢} = «'~' — (1 — §)H for the case V; = L because otherwise,
sj(ci|H, k) = s;(ct|L.h*) = 0. If ¢§ = z'~'. then z' = 0. which is inconsistent with our assumption
that z* > 0. So, we have ¢} = z'~' — (1 — §)H. and hence z* = (1 — §)H. Since s;(c}|H,h") =0, we
must have pZ((ht.z*)) = 0. On the other hand, p;((h*,z')) = 0 by the definition of the belief function
in the punisher’s case with 2! < (1 — §)H. So, we have p?((h!,z*)) = p:((h', z%)).

Fourth, suppose that 6L + (1 — 8)H < zt7! < 8L + (1 — 63 H. If p2((ht,z*)) is well-defined,
then we have either ¢§ = z'~! for the case V; = H or ¢} = 0 for the case V; = L because otherwise,

sj(ci|H, k') = s;(c§|L.h*) = 0. If ¢ = z'~*, then z* = 0, which is inconsistent with our assumption
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that * > 0. So, we have ¢} = 0, and hence z* = z'~* > §L + (1 — §)H. Since s;(ct|H, h) = 0, we
must have pP((h',z")) = 0. On the other hand, p;((h?,z!)) = 0 by the definition of the belief function
in the punisher’s case with z* > §L + (1 — §)H. So, we have pZ((ht,z')) = p:((ht.z})).

Finally, suppose that z*~! > §°L + (1 — 8%)H. Since deviator j moves in period ¢ given the off-path
history h*, it must be the case that deviator j has deviated for the first time in period (t — 2) or before.
So, h'~! must be off-path. Since i = m(t — 1), we have p;(ht) = pi(h'™"). Since h*~! is the off-path
history with z'72 > 2"~ > 6L + (1 — §°)H > L + (1 — §)H, we have p;(h*~!) = 0 by the definition
of the belief function in the punisher’s case with z'~2 > §L + (1 — §)H. Hence, p:(h?) = p;(ht~1) = 0.
If pP((h',z")) is well-defined, then (1 — p;(h*))s;(c}|L,h?) > 0 since p;(h')s;(ct|H,h') =0. When
(1 = pi(h'))s;(c5|L, h*) > 0, we have c§ = 0 because otherwise, s;(c}|L, k") = 0. Therefore, if pZ ((h*, z*))
is well-defined, then z* = z*~' > §L+(1—8)H and p?((h', z*)) = 0. On the other hand. p;((h,z!)) = 0
by the definition of the belief function in the punisher’s case with z* > §L + (1 — §)H. So, we have

pl((h'.2") = pi((h*,2")). O

Lemma 17. Suppose that agent j moves as the punisher given an off-path history h', that is,
j=m(t) #d(h') =i. Forz' =z'"' —(ct +cb) > 0 where (ct, ch) satisfies the feasibility, if pZ ((ht, zt))

is well-defined, then p? ((h',z)) = p;((ht,z!)).

Proof. For the continuing history (h,z"), agent 4 moves as the deviator since i = d(h?).

First, suppose that z'~' < (1 — §)H. If pP?((h',z")) is well-defined, then ¢} = z'~! because
otherwise, s;(c§|H,h*) = s;(c5|L.h') = 0. Given such c}, we have z' = 0, which is inconsistent with
our assumption that z* > 0.

Second, suppose that z'~' > (1 — §)H. If pP((h*,z")) is well-defined, then we must have c} =
max{0,z'~" — 6L — (1 — §)H} because otherwise, s;(ci|H,h') = s;(ci|L,h*) = 0 as described in
the punisher’s case of the strategy. Given such ¢}, we have 2* = min{z'"',6L + (1 — §)H} > 0.
Since s;(cj|H,h') = s;(ci|L,h*) = 1 for such c§, we must have p?((h',z")) = pi(h'). Furthermore,
pi(h*) = pi(h*™!) by the definition of p;(h') in the case where i = m(t — 1). If h*~! is on-path, then
pi(h'™!) = P; by the definition of the belief function. If h*~! is off-path and hence agent i is the deviator
for K*~1, then p;(h'™!) = P; by the definition of the belief function. Therefore, pZ((ht,z!)) = P;. On
the other hand, p;((h*,z')) = P; by the definition of the belief function in the deviator’s case. So, we
have pf ((h*,2")) = pi((h*, a*)). U

Proposition 2. A pair (s,p) satisfies reasonability.
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Proof. Lemmas 14 through 17 show the result in exhaustive cases. a

By Propositions 1 and 2, (s,p) is a perfect Bayesian equilibrium. It is clear that the history

hi = @°, %, ... ,cEt__l) is realized along the equilibrium path. So, the proof of the theorem is completed.

4. Conclusion

We have investigated two-player contribution games that are similar to the ones studied by Compte and
Jehiel [2003] but different in that our games are played in incomplete information environments. We
have proved that, if each player’s type is unknown to his opponent, and if players are sufficiently patient,
then there exists a perfect Bayesian equilibrium in which step-by-step contributions are realized along
the equilibrium path. Unlike Samejima [2013], our result holds without the upper bound condition on
the prior probabilities. So, as long as the prior probabilities are neither 0 nor 1, that is, as long as each
player is not 100% sure about the type of his opponent, our result holds. Our result indicates that very

small uncertainties about valuations held by the opponent players can be a source of the gradualism.
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