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Abstract 

It has been known that there is a quantitative relationship between the structure of 
polymers and their flammability. Knowledge in structure-flammability relationships 
is useful for developing the mechanism of flame retardancy and predicting the fire 
hazard from polymeric materials. This paper presents a structure-property study for 
a series of polyphosphonates, modelled by their monomers. Monomer structures 
were studied by molecular mechanics calculations, using the MMFF94s force field 
included in the Omega software. Two types of chiral structures were found. Structural 
parameters were derived by the InstantJChem from Chemaxon and Dragon programs 
·from the structures of minimum energy thus obtained. The influence of calculated 
structural descriptors of the studied polymers on their flammability (expressed by 
the limiting oxygen index) was modelled by multiple regression analysis (MLR) and 
artificial neural networks (ANN). MLR calculations were combined with genetic 
algorithm for variable selection. Several two descriptor MLR stable models were 
obtained and comparable ANN modelling results were noticed. Information on the 
nature of structural descriptors which influence the flammability was discussed. 
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1. Introduction 

Flame retardants are added to plastic materials to inhibit or suppress the combustion 
process and to improve the ignition or burning performance. One of the most well 
known parameter of polymer flammability is the limiting oxygen index (LOI). 
It expresses the minimum percentage of oxygen required to sustain ignition and 

1 This study was presented at the ChemAxon's 2012 European User GroupMeeting, 21-24 mai 2012, Budapest, 
Hungary (http://www.chemaxon.com/library/a-preliminary-sbucture-flammability-study-of-some-polymersl) 
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combustion. Flammability of commercial polymers became important in the last 

decades because of the widespread use of the materials (Liaw & Wang, 1996). 

The importance of structure of polymers deciding the flammability has been 

recognized in the literature. Knowledge in structure-flammability relationships 

is useful for developing the mechanism of flame retardancy and predicting the 

flammability of polymers. Aromatic polyesters have been found in the last years to be 

technically interesting as engineering plastics, especially the phosphoric polyesters 

(polyphosphonates and polyphosphates). The materials are excellent in mechanical, 

electrical and flame resistance properties and also because of their analogy with the 

nucleic acids (Sandler & Karo, 1974; Iliescu et al., 1999). The phosphorous, halogen 

and nitrogen-containing polymers are the most widely used as commercial fire­

retardant polymers (Iliescu et al., 1999). 

This paper presents a structure-flammability study for a series of polyphosphonates, 

modeled by their monomers. Nearly all properties of the solid, liquid, and dissolved 

states of polymers can be predicted from chemical structure of monomers (van 

Krevelen & Nijenhuis, 2009). The monomer molecular structures were energetically 

optimized by molecular mechanics calculations. Several OD, lD, 2D and 3D 

descriptors were calculated from the minimum energy conformations and two types 

of data mining approaches, multiple regression analysis (MLR) and artificial neural 

networks (ANN) methods, were applied to model polymer flammability. 

2. Materials and Methods 

A series of 14 polyphosphonates (Annakuty & Kishore, 1988) of various types (Fig. 

1) was considered, having the limiting oxygen index (LOI) as dependent variable. 

Structural parameters 

The polyphosphonates which were studied (Fig. 1) were modeled by their 
monomers in a first approximation. The monomer molecular structures were built 

by the Marvin Sketch 5.10 program (Chemaxon Ltd., Budapest Hungary) and 

energetically optimized by molecular mechanics calculations (MMFF94s force field) 

using the OMEGA software (OMEGA (version 2.4.6), OpenEye Science Software, 

3600 Cerrillos Road, Suite 1107, Santa Fe, USA, 2008). Several OD, 1D, 2D and 
3D descriptors were calculated from the minimum energy conformations by various 

programs: InstantJChem (InstantJChem 5.10, Chemaxon Ltd., Budapest Hungary) and 

Dragon (Dragon Professional5.5/2007, Talete S.R.L., Milano, Italy). 

From the conformational search of each molecule the minimum energy structure 
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was used to derive structural descriptors. Thus, twenty-two types of descriptors were 

calculated by the Dragon software, like: constitutional, functional groups counts, 

topological descriptors, Burden eigenvalues, eigenvalue-based indices, Galvez 

descriptors (topological charge indicies), Getaway descriptors: ISH - standardized 

information content on the leverage equality, Randic descriptors (Randic molecular 

profiles), RDF descriptors (radial distribution function descriptors; MWC (Molecular 

walk counts path counts- atomic and molecular descriptors) and 3D-MoRSE 

(3D-molecule representation of structure based on electron diffraction descriptors): 

Mor02m- 3D-MoRSE - signal 02 I weighted by atomic masses (3D MoRSE 

descriptor), Mor13u- 3D-MoRSE- signal 13 I unweighted, atom-centred fragments, 

information indices, edge adjacency indices, topological charge indices, connectivity 

indices, 2D-autocorrelations, molecular properties, 2D binary fingerprints, and 2D 

frequency fingerprints. 

Several structural descriptors were calculated by using InstantJChem software: 

Maximal Projection Area, Minimal Projection Radius, Average Polarizability, Van 

der Waals Surface Area, ASA Hydrophobic - solvent accessible surface area of all 

hydrophobic (IQil < 0.125) atoms (IQil is the absolute value of the partial charge of the 

atom), ASA - solvent accessible surface area calculated using the radius of the solvent 

( 1.4 A for the water molecule), refractivity, logP- logarithm of octanol/water partition 

coefficient. 

Multiple linear rearession CMLRl 

MLR calculations (Wold & Dunn ill, 1983) were performed by the STATISTICA 

(STATISTICA 7.1, Tulsa, StatSoft Inc, OK, USA) and combined with genetic 

algorithm (Rogers & Hopfinger, 1994) in MobyDigs (Todeschini et al., 2004a) 

programs. The leave-one-out fitness function was used in our study as RQK fitness 

function (Todeschini et al., 2004b ). 

Artificial neural networks <ANNsl 

The artificial neural networks have an inherent ability to provide non-linear and 

cross product terms for QSAR modeling. The ANNs are especially useful when a 

rigid theoretical basis and/or mathematical relationship to describe a phenomenon to 
be modeled are not available in advance. 

The three-layer ANNs with the back-propagation of errors (Zupan & Gasteiger, 

1999) were employed in this study. ANNs calculations were carried out by using our 

inhouse program. The most commonly used log sigmoid function and the delta rule 

for the error correction formula were used in the networks. 
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Fig. 1. Polyphosphonate structures 

Model validity 

All the statistical tests were performed at a significance level of 5 % or less. In 
GA-MLR calculations outliers were tested by estimating the standardized residuals 
of less than -3.0 or more than +3.0 (Frank & Althoen, 1995) and by the value of 
residual greater than three times the value of standard error in calculation (Todeschini 
& Consonni, 2000), as implemented in the MobyDigs program. The Kubinyi fitness 
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function (Kubinyi, 1994) was, also, used to check the goodness of fit of the obtained 
GA-MLR models. 

To avoid models with collinearity without prediction power, regression models 
were calculated only for variable subsets with an acceptable multivariate correlation 
applying the QUIK (Q Under Influence of K) procedure based on the K multivariate 
correlation index (Todeschini et al., 1999). Only models with a global correlation of 
[XY] block (Kx.v) greater than the global correlation of the X block (Kxx) variable can 
be accepted, where X is the descriptor matrix and Y is the dependent variable. To each 
model, the Kx.v and Kxx values were calculated. Several commonly used statistic terms 
were adopted to check the reliability, robustness and stability of the proposed model 
such as correlation coefficient (r\ leave-one-out (LOO) cross-validated l, root mean 
square error for the training set (SDEC) and predictive set (SDEP) (Consonni et al., 
2009). The goodness of prediction of the GA-MLR models was, also, checked by the 
Akaike Information Criterion (AIC) (Gentleman & Wilk, 1975), andY-scrambling 
(Lindgren et al., 1996). Y scrambling was applied to exclude the possibility of 
chance correlation and to check for reliability and robustness by permutation testing: 
new models were recalculated for randomly reordered responses (Y scrambling). 
The resulting models obtained with randomized responses should have significantly 
lower l values than the proposed ones because the relationship between the structure 
and response is broken. Y scrambling was performed by response scrambling 
with maximum iterations of 500, and then the mean values of R\scrambling (a(/)) 
and Q\scrambling (a(l)) were reported. All these calculations were performed by the 
MobyDigs software. The leave-one-out cross-validation procedure (Wold, 1978) was 
also employed to check the robustness of the model. 

Tools of regression diagnostic as residual plots and Williams plots were used to 
check the quality of the best models and define their applicability domain using 
the Mobydigs software. Residual plot shows validated residuals versus response 
values and enables the search for outliers and to verify the assumption of the GA­
MLR method on the normal error distribution, therefore this plot is a tool to evaluate 
the existence of a linear relation between variables and response. Leverages of test 
compounds were calculated to check their distance from the model experimental 
space; the greater the distance the more unreliable the predicted response (Frank & 

Todeschini, 1994). 
Several statistical measures to test the model fitting quality were derived from 

the calculated LOI values (e.g. RMSE-the root mean square error (Goodarzi, 
2009), NRMSE-the normalized root mean square, RMSECoef-the coefficient of 
variation of the RMSE, RSE(% )-the relative standard error of prediction(Goodarzi, 
2009), and MAE( % )- the mean absolute error (Goodarzi, 2009) and, respctively 
from the leave-one-out predicted LOI values (the corresponding RMSEP, 
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NRMSEP, RMSEPCoef, RSEP(% ), MAEP(%) criteria): 

n 

~)Y pred - Y obsf 
RMSE= i=l (1) 

n 

NRMSE= RMSE 
Y max -y min 

(2) 

RMSECoef = ~SE (3) 

LYobs 

n 

RSE(%)=100 (4) 

MAE(%)= 100 ~I( )I L, Y pred - Y obs 
n i=l 

(5) 

where Yabs is the observed value of the dependent variable in the sample, Ypred the 
calculated/predicted value of the dependent variable (either as internal, cross­
validated, or external, test set prediction), n the number of samples in the set, Ymax and 

Ymin the maximum respectively minimum value of the dependent variable. 

3. Results and Discussion 

Two types of chiral structures were found by conformational analysis for each 
compound and conformers of minimum energy were further used. Structural 
parameters were derived by InstantJChem and Dragon programs from the structures 
of minimum energy thus obtained. MLR calculations were performed for each type of 
isomer. Variable selection was carried out by the genetic algorithm, using the leave­
one-out fit criterion as constrained function to be optimized. Satisfactory MLR models 
was obtained for R (Table l) and for S isomer (Table 2). 

Best MLR model for R isomer was MLR9R and for S isomer: MLR3S. Better fitting 
results and stable models were noticed in case of R isomers models. 

The applicability domain of the best MLR9R model was checked by the 
Williams plot (Figure 2). This plot confirms the absence of outliers and 
influential points (the leverage average value = 0.214). 
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Figures 3 and 4 presents the experimental versus calculated, respectively, predicted 

LOI values derived from model MLR9R. 
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Fig. 2. Williams plot: jackknifed residuals of the MLR9R model versus leverages. 



Table 1. MLR and ANN models obtained for the R isomer 

ID Models 
, 

q2 q2boot a(/) a(qz) r 2ad' AIC Kx K,y SDEP SDEC F r s 
Maximal Projection 

0.883 0.825 0.802 0.364 -0.019 0.862 15.764 40.93 47.65 3.462 2.831 41.52 3.194 MLR1R Area, ISH 
Average 
Polarizability, 0.848 0.765 0.751 0.249 -0.293 0.820 20.547 25.75 46.53 4.013 3.232 30.57 3.646 

MLR2R ISH 
Vander Waals 

0.819 0.716 0.687 0.446 0.091 0.786 24.352 42.17 46.29 4.41 3.519 24.94 3.97 
MLR3R Surface Area, ISH 

ASA Hydrophobic, 
0.819 0.711 0.703 0.338 0.037 0.786 24.369 36.37 46.12 4.449 3.52 24.92 3.971 MLR4R ISH 

MLR5R ASA, ISH 0.811 0.712 0.690 0.245 -0.197 0.776 25.492 32.36 45.81 4.445 3.6 23.58 4.061 
MLR6R Refractivity, ISH 0.855 0.762 0.721 0.300 -0.218 0.828 19.59 29.21 46.78 4.037 3.156 32.34 3.56 

Minimal Projection 
MLR 7R Radius, Mor02m 0.802 0.722 0.716 0.255 -0.194 0.767 26.623 27.02 45.6 4.366 3.679 22.34 4.151 

Average 
Polarizability, 0.846 0.762 0.723 0.381 -0.012 0.818 20.785 47.08 47.18 4.04 3.251 30.16 3.667 

MLR8R Morl3u 
MLR9R logP, ISH 0.887 0.830 0.822 0.166 -0.444 0.866 15.281 18.81 47.35 3.417 2.787 43.01 3.144 
ANN9R ANN 0.870 - - - - - - - - - - - -
r-- Correlation coefficient, q" -leave-one-out crossvalidation parameter, q"boo,- bootstrapping parameter,a(r") and a(q")- Y-scrambling variables, 

r 2adj- adjustedr2, SDEP- standard deviation error in prediction, SDEC- standard deviation error in calculation, F- Fischer test, s- standard error of estimate, 
AIC - Akaike Information Criterion, the multivariate K correlation indices (K, - the multivariate correlation index of the matrix of X descriptors and Kxy -
the multivariate correlation index of the matrix of X descriptors and Y response variable), FIT- the Kubinyi fitness function, 
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Table 2. MLR and ANN models obtained for the S isomer 

ID Models r q2 q2boot a(/) a(q2) rad' AIC Kx Kry SDEP SDEC F s 
Average Polarizability, 

0.778 0.648 0.579 0.113 -0.460 0.737 29.973 7.71 44.26 4.909 3.904 19.23 4.404 MLR1S ISH 
Minimal Projection 
Radius, 0.678 0.510 0.463 0.104 -0.567 0.620 43.354 3.11 42.49 5.792 4.695 11.6 5.296 

MLR2S GATS 1m 
Minimal Projection 
Radius, 0.841 0.790 0.777 0.249 -0.200 0.812 21.499 27.71 46.5 3.793 3.306 28.98 3.73 

MLR3S Mor02m 
ANN3S ANN 0.82 - - - - - - - - - - - -

... - .. -- . . .. -· . ' .. ' .. . .. ... 
q- -leave-one-out crossvaJJCiatlon parameter, q-boo,- bootstrappmg parameter,a(r"J anaa(q-)- r -scrambtmg 

r 2 adi- adjusted r, SDEP- standard deviation error in prediction, SDEC- standard deviation error in calculation, F- Fischer test, s- standard error of estimate, 
AIC - Akaike Information Criterion, the multivariate K correlation indices ( K, - the multivariate correlation index of the matrix of X descriptors and /Gy -
the multivariate correlation index of the matrix of X descriptors andY response variable), FIT- the Kubinyi fitness function. 
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Table 3. Calculated criteria for MLR and ANN model goodness of fitting 

Model RMSE RMSEP RMSENorm RMSEPNorm SMSECoef RMSEPCoef RSE RSEP MAE MAEP 

MLRIR 2.83 3.46 0.10 0.13 0.07 0.09 7.04 8.60 42.48 47.28 

MLR2R 3.23 4.01 0.12 0.15 0.08 0.10 8.04 9.97 43.99 49.57 

MLR3R 3.52 4.41 0.13 0.15 0.09 0.10 8.75 10.97 46.62 52.68 

MLR4R 3.52 4.45 0.13 0.16 0.09 0.11 8.75 11.06 47.20 36.44 

MLR5R 3.60 4.44 0.13 0.16 0.09 0.11 8.95 11.05 47.14 52.96 

MLR6R 3.16 4.04 0.12 0.15 0.08 0.10 7.85 10.04 43.28 49.31 

MLR7R 3.68 4.37 0.14 0.16 0.09 0.11 9.15 10.85 46.12 51.43 

MLR8R 3.25 4.04 0.12 0.15 0.08 0.10 8.08 10.04 45.31 51.03 

MLR9R 2.79 3.42 0.10 0.13 0.07 0.09 6.93 8.50 40.30 45.29 

ANN9R 2.94 3.64 0.11 0.13 O.o? 0.10 7.32 9.05 41.59 46.07 

MLR1S 3.90 4.91 0.14 0.18 0.10 0.12 9.71 12.20 47.42 53.61 

MLR2S 4.70 5.79 0.17 0.21 0.12 0.15 11.67 14.40 53.61 60.49 

MLR3S 3.31 3.79 0.12 0.14 0.08 0.10 8.22 9.43 41.75 45.42 

ANN3S 3.51 4.53 0.13 0.17 0.09 0.12 8.72 11.27 45.79 52.39 

* RMSE - root mean squared error, RMSEP - root mean squared error of prediction (from LOO cross­
validation), RMSENorm - Normalized RMSE, RMSEPNorm - Normalized RMSEP, RMSECoef -
coefficient of variation of the RMSE, RMSEPCoef- coefficient of variation of the RMSEP, RSE (%)­
relative standard error of fitting, RSEP (%)-relative standard error of prediction, MAE(%)- mean absolute 
error of fitting, MAEP (%)-mean absolute error of prediction 

~ ~ ~ ~ 39 ~ ~ « ~ ~ ~ ~ ~ ~ 

Calculatid LOivarues Predicted LOivalues 

Fig. 3. Experimental versus calculated (left), respectively predicted (right) LOI values for the MLR9R 
model. 

GETAWAY (Geometry, Topology, and Atom-Weights AssemblY) descriptors 
encode both geometrical information given by the Molecular Influence Matrix (which 
in tum takes into account the relative position of atoms in a molecular structure 
optimized in some way) and the topological information given by the molecular graph, 

weighted by chemical information encoded in selected atomic weights. 
The best set of molecular descriptors included in the above MLR model was used 

to develop the nonlinear models by ANNs. ANNs gave worse results in comparison to 
the MLR model, indicating a preferred linear fitting. The obtained "tentative" models 
allow a rough estimation and factors that influence the polymer flammability. 
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The calculated goodness of fit criteria presented in Tables 1 and 2 indicated the 

MLR9R as a stable model to simulate polymer flammability. 

~~~~~~--~----~~~~--~ 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ m ~ M ~ 

Cala.iated LOI va1Jes 
~ ~ M ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

PndctedlOiva!Les 

Fig. 4. Experimental versus calculated (left), respectively predicted (right) LOI values for the ANN9R 
model. 

4. Conclusion 

A structure-flammability study was developed for a series of 14 polyphosphonates. 

Their monomer structures were studied by molecular mechanics calculations, using the 
MMFF94s force field. Two types of chirality were found by conformational analysis 

performed for each compound. Several descriptors derived from the minimum energy 
structures were related by multiple linear regression and neural networks to their 

flammability, expressed by the LOI values. Several criteria of goodness of fit were 

calculated for these models. Better statistical results and stable models were obtained 

for the R isomers. Increased polymer hydrophobicity favors higher flammability. The 
geometry of R isomers is favorable for the flammability too. 
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