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Abstract 

The aim of this paper is to derive distributions of count variables based on generalized count data 

models， when inference is based on an on-site sample. On-site sampling is a method where data 

are coIIected from subjαts that are engaged in an activity of interest (on-site population) at the 

time of sampIing. WhiIe the method inevitably implies selection bias， it is in general easier to 

implement than random sampling. Furthermore， when a high frequ巴ncyof zero values is 

expected in the whole population， on-site sampling makes it possible to draw inferences based on 

a relatively smaII sample size. After introducing various forms of generaIized count data models， 

distribution of an on-site population coπesponding to each model is derived and their prope口ies

studied. Estimation based on an on-site sample is also discussed briefly. 
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1. Introduction 

Count data refer to data taken on the number of events in a specified time interval. In many 

microeconomic applications， we are interested in the dependence of a count variable on other 

quantitative or qualitative variables， called regressors. Although count variables are discrete by 

nature， there is little loss of information when their distributions are approximated by continuous 

distributions such as the normal‘provided the data consist mostly of large values. If this is the 

case， classical econometric models may be employed for analysis. In contrast， when the data 

include a number of small values‘as is common with microeconomic data， it is essential to derive 

discrete models for the counts. Such models are called count data models. 

While interest in count data model is relatively new in econometrics， its role is becoming 

increasingly important with the proliferation of microeconomic data. The most basic regression 

model for count data is the Poisson model， where a count variable follows a Poisson distribution 

with mean parameter that is a deterministic function of the regressors. Empirical findings 

suggest however， that the Poisson assumption is not consistent with some features of real-life data， 

and for this reasonヲvariousgeneralized count data models have been proposed. Some of these 

features include heterogeneity of the population， observation of excess zeros， and dependence 

between occurrence times of events. A brief survey of generalized count data models is given in 

Sections 2 and 3， with emphasis on models based on flexible assumptions for the count 

distribution. 

Sampling method plays an essential role in the analysis of a count variable， since in many 

cases data exhibit a high frequency of zeros. If random sampling is employed under such 

circumstancesヲ alarge sample size is required to perform reliable analysis. When data are 

collected only from items taking non-zero values， such inefficiency can be avoided. One such 

method is to employ on-site sampling， where random samples are taken from a population of 

subjects that are engaged in an activity of interest (refe汀edto as on-site population) at the time of 

sampling. Although the method inevitably contains sampling bias， it is in general easier to imply. 

Furthermore‘a smaller sample size is required to perform inference based on on-site samples，、

since zero values are precluded in the sample. On-site sampling is discussed in Section 4， where 

distributions of on-site populations corresponding to models of Sections 2 and 3 are derived. 

Estimation methods are discussed briefly for each case. 

It is assumed throughout the paper that data are taken in cross-section form (single 

observation on the number of counts per each individual) unless noted otherwise. 
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On-Site Sampling and Generalized Count Data Models 

2. Parametric count data models 

Count data models are used extensively in the area of reliability analysis， bio-statistics and 

demography， where various models as well as estimation techniques have been developed. A 

special feature of economic data is that the only information available is the number of event 

counts over a specified time interval. Such data are sometimes called current status data in the 

statistical literature. In contrast， in areas such as reliability analysis、itis common to assume that 

event times are observed as well. Observation of current status data is a natural assumption when 

data are collected in surveys. In general， it implies a loss of information compared to the case 

where the event times are also observed， the exception being the baseline Poisson model described 

bellow. 

The most basic model of a count variable， sometimes called the baseline model， is the simple 

Poisson model where the number of counts Y in a given time period (which is standardized to be 

1) follows a Poisson distribution: 

EλλY 
P(Y = ylλ) =p(ylλ)=つ7・ (2.1) 

Here‘ λ= E(Y) is the mean paramete工 Incase of count data regression， it is customary to 

assume thatλdepends on the regressors through the relation logλ=iβ 、whereX denotes a 

k dimensional column vector of regressors (小…，xd'whose values are observed and β今 a

k x 1 parameter vector (βl'…，β'k)' to be estimated企omdata. Then， E ( Y ) =λ= e-x's， so the 

above specification ensures positivity of the expected value of the counts. The log-likelihood of 

the Poisson model (2.1) based on observations (Xi' Yi) i = 1，…，n is given by 

logL= ヱe~X; β+ヱ YiX; β+エlog Yi! (2.2) 

When event counts follow the Poisson modelラ thereis indeed no shortage in the amount of 

information we obtain through current status data， since in this case， inter-event times follow an 

exponential distribution which has the famous memory-Iess prope口y.

A serious drawback of the Poisson model is the restriction that expected value of the counts 

must equal its variance. This follows since Poisson distribution is a one-parameter distribution. 

Evidence from empirical data suggest however， that variance usually exceeds the mean (a case 

called over-dispersion). In some cases， the data also exhibit an excess number of zeros compared 
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to those expected by a Poisson distribution. Two types of models are commonly used to account 

for excess zeros. The zero-inflated Poisson model， where zero is assumed to come from two 

di仔erentsources， and the hurdle model‘where the model consists of a two-part decision process 

and zero is generated by an independent data generating process. For further details on these 

models， see for example， Cameron， A. C. and Trivedi‘P. K. (1998). 

A s巴condand equaIIy serious limitation of the Poisson model is that it does not aIIow 

heterogeneity within the population. An assumption of a homogeneous population is not likely to 

hold in practice. To accommodate heterogeneity， it is often assumed that an unobservable 

heterogeneity factor a在民tsthe expected value of the counts in a multiplicative form. More 

specificaII弘forevery observation i， it is assumed that E(再)=ん=みη=exp(x;β)Vi，where vi 

is an unobservable heterogeneity factor with E(vi) = 1. Since heterogeneity is unobservable， it 

needs to be integrated out of the distribution function to obtain the conditional distribution of Y 

given x. Letting g denote the density of Vラ marginaldensity of the counts with 

multiplicative heterogeneity is then seen to be 

(eーλV(λv)Y
P(y I x) = I一一ーで一-g(v)dv (2.3) 

J y! 

the mixed Poisson distribution. 

Note that when regressors are observed with e汀or(the errors-in-variables case) and no 

heterogeneity is assumed， the resulting distribution of Y has exactly the same form as above. To 

show this， let z;β= (x; +u;)βwhere Zi is a vector of observed variables and Ui' a vector of 

observation errors. Assuming as in the Poisson model， E(Y;) = exp(x;β)ラdefinec = exp( -u;β) 
and let g be the density function of c. Then 

(e λ~ (Ic)Y 
P(y I z) = I一一ーァ:!.._g(c)dc， (2.4) 

J y! 

where λ= exp(z;β) . It is not possible to identifシwhethermixing is due to heterogeneity or 

errors-in-variables or both， unless there is additional information. In the foIIowing discussion， it 

wiII be assumed that the model implies heterogeneity. This is done mainly for expository 

purposes. It should be kept in mind that the same argument applies for the errors-in-variables 

case as welI. 

Multiplicative heterogeneity does not change the expected value of Y， but changes its 

variance and causes over-dispersion. As a result， zeros as weII as large values are more 

frequently observed than in the simple Poisson modeI. Regardless of the form of g， it can be 
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shown that 

Var(Y) =λ2Var(v)+λ(2.5)  

provided E(v)ニ1，a standardization employed for identification pu中oses. When the 

distribution of the count variable belongs to an exponential family， Shaked (1980) has derived a 

more general result referred to as the Two Crossings Theorem. The theorem states that mixed 

distribution always have heavier tails than the original distribution. 

When the true model is the mixed Poisson distribution， consistency of MLE based on the 

simple Poisson model is still valid. This follows since合om(2.2)， the first order condition for 

maximum likelihood estimation ofthe Poisson model is seen to be 

ヱ(Yi一ρ )Xi=0 (2.6) 

which holds as long as the relation between the mean of the counts and the regressors is valid. A 

straightforward approach to estimating a mixed model then is to use the Poisson MLE and adjust 

for the variance. A common method is to describe the variance as a function of the mean， the 

most popular being Var(Y 1λ)=λ+αλP where αis a scalar parameter and p is some 

specified value， usually 1 or 2. This is the method of pseudo maximum likelihood. Using this 

approach， no assumption is necessary regarding the form ofthe heterogeneity distribution. 

A second approach to estimating a mixed model is to assume a parametric distribution for 

heterogeneity. The form of the mixed distribution depends on the form of g， so in order to 

estimate the model parametrically， it is necessary to specifシthedistribution of the unobserved 

heterogeneity factor v. The most popular choice for the form of g is the Gamma distribution 

T(α，α) ， which results in a Negative Binomial for the distribution ofthe counts. The shape and 

scale parameter of the Gamma distribution are set equal to accommodate the assumption that 

E(v) = 1. The coηesponding distribution ofthe counts is seen to be 

P(y 1 x，A，a) =ぷ;:。(zgzf(合J， (2.7) 

which is the Negative Binomial distribution with meanλ = e-x's and variance λ(1+ ~) 
Parameter estimates are obtained by maximum likelihood method. It is to be noted that there are 

other possible parameterization of the Gamma distribution， which will also lead to the Negative 

Binomial for the marginal distribution of Y， but with slightly di丘erentparameterization. 

In many empirical cases， the Negative Binomial model seems to fit the data fairly well. 
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This does not necessarily imply that it is indeed the co汀ectmodel. In fact， it may simply be the 

result that the count variable follows an over-dispersed distribution that is a member of the linear 

exponential family with two parameters， and that the functional form of variance (2.5) is known. 

See Gourieroux， C.， A. Monfort and A. Trognon (1984a，b) for details. Other choices for 

heterogeneity distribution include inverse Gamma distribution by Dean， Lawless and Willmot 

(1989)， and lognormal distribution by Hinde (1982). Fully parametric methods may produce 

biased results when the assumption on the form ofthe distribution does not hold， and often there is 

no s汀ongfoundation for the assumption on the heterogeneity distribution. 

When data are obtained in panels， a more elaborate model can be employed. See for 

example， Hausman， Hall and Griliches (1984) for a detailed discussion on parame仕icestimation 

ofpanel data. A time series data ofthe counts present a different type of difficulty， since the data 

collected will typically be dependent of one another. One of the popular models used in this 

instance is the binomial-thinning model， where counts仕oma previous time period are thinned 

down while new independent counts occur within a given time period. For a detai!ed account of 

the binomial thinning model， see AI-Osh， M. A. and Alzaid， A. A. (1987). 

3. Generalized count data models 

Assuming a parametric distribution for heterogeneity is somewhat arbitrary and mainly for 

computational ease. With the advancement of computer technology， estimating models requiring 

computer intensive methods have become less inhibitive. For this reason， various models in a 

more general framework imposing less restriction on the distributional form have been proposed. 

Several of these models are presented in this section. 

3.1. Series models 

Gurmu， Rilstone， and Stem (1999) developed a semi-parametric model (referred to as the 

GRS-modeI) of the counts based on a series expansion for the distribution of unobserved 

heterogeneity. Their model assumes that conditional distribution ofthe counts given the value of 

heterogeneity follows a Poisson distribution， and the distribution of the heterogeneity factor v is 

approximated by an orthonormal polynomiaI expansion. More specifically， the distribution of v 

is given by 
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ポVi)十 川叫 川

where叫V) is the baseline density of heterogeneiけ，九(Vi)denotes a polynomial of degree K， 

and </1= jW(V)[PK(Vi)]2dVi is the const制 ofproportionality ん(Vi)is珂uaredto ensure 

positivity of the density of the counts. In particular， Gamma distribution is employed as the 

baseline distribution ofheterogeneity， 

庄一l令官

w(V;) =ニ」」L-e一λV;
r(α) 

and a generalized Lagueηe polynomial is employed for PK (v) ， 

見向)到~}ぷ♂作Vi >'

(3.2) 

(3.3) 

The model nests the Negative Binomial and the geometric count model as special cases. 

Hence， it is a more f1exible form of specification. Provided the density g(v) has finite-order 

moments， it gives consistent estimators regardless of the form of g. The estimating equation is 

quite complex and computer intensive methods are necessary to implement. The model can also 

be extended to incorporate truncations or excessive zeros. For details， see Gurmu， Rilstone and 

Stern (1999). 

Cameron and Johansson (1997) developed a model (CJ-model) where the distribution of the 

count variable itself is depicted using a series expansion. This model is attractive in that it allows 

the case of under-dispersion (mean exceeding variance) as well as over-dispersion. It remains to 

be seen whether it is possible to approximate the distribution of an arbitrary discrete variable using 

a series expansion， and the model may not always prove to be parsimonious since it requires quite 

a few polynomial terms to deviate significantly仕omthe baseline distribution. Their model 

assumes the following distribution for the counts: 

h~(y 1 a) 
Pn(ylλ，a)=f(ylλ)2一一一-
yηp(λ，a) 

p 

(3.4) 

Here， f(ylλ) is the baseline density， hp(yla)= .L，akl is the pth 0蜘 polynomial，

p p 

G ニ (ao，a".・ ，ap)'is the v削 orof paramete民 and刀p-エエaka{mk+{is a non凶
with mk denoting k th non-central moment of the baseline density f(y [λ) . The polynomial 
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hp (y I a) is again squared to ensure positivity. The appropriate order of expansion is determined 

via a model selection criterion such as AIC or BIC. 

A reasonable choice for f(y Iλ) is the Poisson distribution， in which case the distribution of 

the count variable is specifi巴das follows: 

eλλy h~ (Y I a) λY÷(ー1)Jλj h~(yla) 
Pn(ylλ，a)=一一一一一一一=一一〉一一一一一一一-
1'''' " y! ηp(λ，a) y!台 j!ηp(λ，a) (3.5) 

When the baseline distribution is Negative Binomial， the co汀espondingdistribution of the counts 

is seen to be 

ろ iM)47j51711(ず (3.6) 

Cameron and Trivedi (1998) have shown that in general， Negative Binomial baseline model 

fits the empirical data better. It is more flexible compared to the Poisson baseline model (3.5) 

with the cost of estimating one additional parameterαThe Negative Binomial Baseline model 

(3.6) corresponds to the GRS-model model with gamma baseline distribution for heterogeneity. 

Empirical comparison by Cameron and Trivedi of a CJ-model with Negative Binomial baseline 

distribution and GRS-model with Gamma baseline distribution for heterogeneity suggests that 

perfoηnances ofboth models are compatible. 

CJ-model is not derived as an approximation to the distribution of unobserved heterogeneity. 

To interpret their model企omthis point of view， rewrite the mixed Poisson density assuming 

exchangeability of integration and addition， as 

う λY~(一I)J ，i 
f(ylλ)=ーァ〉ーでアグμ川，

y!?雪 J!
(3.7) 

wl附帥伽e，V is the u帥 servedhete時 eneityぬ伽W油 E(中 1，andμ川 =E(V叶 is

the (j + y)th non-central moment of heterogeneity v. Comparing equations (3.5) and (3.7)， 

CJ-model with baseline Poisson distribution can be interpreted as estimating the叫weighted

average" of the non-central moments of heterogeneity by a finite polynomial of the observed 

number of counts. It should be noted that CJ-model with Negative Binomial distribution as the 

baseline di::;tribution coπesponds to estimating the non-central moment of heterogeneity in (3.7) 

using higher order polynomial ofthe count variable. 
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3.2. Finite mIxture models 

Another approach to modeling heterogeneity is to use finite mixture models. In this 

approach， the count variable Y is divided into several latent classes， the number (of which is 

alsο estimat芯d合omdata. When Y is gener悶at匂怠d合om(groups each with a Poisson distribution 

b川 i江thdi仔能e削阿ame仰伽t旬附e釘r凶ssj = (βlりj，sιβs2υj..sんω材kJ j=I，...，ムμCムυ，t出h巴d刷 b以凶but凶I氏tiぬon川ofY is同give附V刊en
~ A付;tε目x早p(←一λAij古UρiJ .) ) P(Yi Ixi，β，p)=芝Pi ・， (3.8) 
7ゴ Yi!

where P j denotes the mixing probabilities j = 1，…，c with P=(Pl'…'Pc}， β=(sl'…，β:C> is a 

k x c matrix of parametersωbe estimated， and Aij = exp(x;β) . For this model，ぬ巴 meanand 
variance ofthe count variable Yi are seen to be 

E(耳)=ヱpん (3.9) 

and 

均 r(}j)十~合A恰イ (3.10) 

respectively， so that E(り=Var(わ if and only if AiI =ん=…ん， the case with no 

heterogeneity. AIthough the model implies discreteness of the heterogeneity distribution， the 

approach provides good numerical approximation even when the true mixing distribution is 

continuous. It is also straightforward to incorporate the case of excess zeros using this modeI. 

The approach differs合omthe semi-parametric approach in Section 3.1 in that it changes the 

mean-variance relationship， as is seen from (3.9) and (3.10). See Wang， Puterman， Cockburn and 

Lee (1996) for further details. 

3.3. Models based on waiting times 

Models discussed in Sections 3.1 and 3.2 focus on the heterogeneity factor to generalize the 

baseline Poisson modeI. Since the flip side of the number of event counts is the waiting time 

between events， an alternative method of generalization is to consider the model in terms of the 

waiting time distribution. Poisson model implicitly assumes that waiting times between 

(k -1) th and k th event 1"k (k = 1，・ー，y)are independent and identicaIIy distributed with an 

exponential distribution. 
タ f(t) 

In this case， the hazard function ι=一一一一， where f(t) is the 
円 1-F(t) 
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density and F(t) the distribution of waiting times r， remains constant over time. To 

generalize the model， various waiting time distributions may be employed. A straightforward 

extension of the exponential waiting time distribution is the Gamma distribution. 8ased on the 

assumption that waiting times are independent and identically distributed with density 

Da 

f(rlα，β) =!:_ . ra-1eβT， Winklemann (1995) has shown that the distribution of the counts 
f(α) 

follows 

。-1 DlXI'+i 
P(yla，s)=eーケ P'

t;t(句+i)! 
(3.11 ) 

When the waiting times are Gamma distributed， hazard function is either monotone decreasing or 

monotone increasing. Moreover， negative duration dependence (hazard function is a decreasing 

function of time) causes asymptotic over-dispersion of the count variable， whereas positive 

duration dependence causes asymptotic under-dispersion. In order to obtain a Gamma count 

β ， 
regression model， it is further assumed that !::_ = eX' r where as before， x denotes a k 

α 

dimensional column vector of regressors (xI'…，xk)'. The resulting likelihood function is 

nonlinear in αand r， and requires iterative numerical algorithms for estimation. 

Gourieroux and Visser (1997) constructed a model based on the assumption that waiting times 

are influenced by several factors; an observable individual specific factor Xi， unobserved 

individual specific factor (heterogeneity factor) that is constant through the observation period Vi， 

and an unobservable individual and spell specific factor ηik' where k denotes the number of 

events so far. Inclusion of 勾ikin the model implies that waiting time between the (k -1) th and 

the k th event rk depends not only on individual factors but also on the number of events so far. 

According to their model， the heterogeneity factors satisfシthefollowing: 

A 1: Vi，'7il" "'7ik"" are independent of xi' and vi's are i.i.d. random variables. 

A2: Conditionally on (x，v，η'k)' duration times 'rk k = 1，…， follow an exponential distribution 

independently with parametersλ(X.V，η'k) . 

A3: The parameterλ(X，V，η'k) is decomposed asλ(X，V，ηk) =λ(x，v)(l +ηk)l. 

Observed variables are the number of counts y and values of individual specific factors Xi. 

Conditional distribution of the count variable based on the above condition takes a 

complicated form，仕omwhich we need to derive the marginal distribution to pursue estimation. 

This makes the model unattractive. Instead， Gourieroux and Visser employ a local 
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approximation ofthe model based on the assumption that unobserved heterogeneity is independent 

of the regressors， and that individual and spell specific factors 7]ik are smal!. Expanding the 

characteristic function of the waiting time using this assumption， they obtain the local count data 

model as 

P(ylx)三P¥，(λ)+M¥'+IP.、+1(λ)-M KP，，(λ) ， (3.12) 

where Py(λ)=グ(Y= y) with M y =エη'k' Mr=E(My)，and Mo=O 
When λ=E(Y)=/βis independent of v， so that heterogeneity stems only合om Xi and 

ηik ， the local distribution of the counts becomes 

円ylx)=ギ[1一日+1(y~I)] (3.13) 

This is the model used by Gourieroux and Visser for estimation. To obtain a model that 

corresponds to a generalization of the Negative Binomial model， assume that v follows a 

T(α，α) distribution. Then， P" (λ) is Negative Binomial and the local distribution of the 

counts is seen to be 

- - a+ν+1λ| 
P(ylα，λ)=P，，(λ)11 -M" +M 1'+1一ームーで一一|)' '1 ... (y+1) ..1.+α| 

4. On Site Sampling 

(3.14) 

When the population distribution of a count variable contains a mass at zero， random sampling is 

Iikely to produce a sample with many zeros. To pursue reliable inference in such a case， a large 

sample size is necessary so that enough non-zero values are observed. Instead， 01トsitesampling 

takes random samples合oman on-site population， that is，合oma population of subjects engaged in 

an activity of interest at the time of sampling. For example， if we want a sample on the number 

of visits to hospitals during a certain period， an on-site sample will take random samples合om

patients visiting a hospital on a particular day. This sampling method is in general easier to 

implement than random sampling of the whole population， and saves a considerable amount of 

time and cost. 

A slightly different form of sampling that is sometimes confused with on-sIte sampling 

consists of drawing a random sample from a population of items with positive data values. For 

example， we could draw a random sample合omthe owners of registered vehicles， etc. In this 
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case， the sample distribution PS is simply a conditional distribution ofthe population distribution， 

that is 

P(y) P( y) 
九(y)=P(yly>O)=一一一一ー=
v '"  ，，- ， P( Y > 0) 1 -P( Y = 0) 

(4.1) 

This type of sampling method has limited usage， for information on data values is usuaIIy not 

available prior to sampling. 

When discussing on-site sampling， it is essential to consider sampling bias. Note that taking 

random samples仕oman on-site population does not coηespond to a random sample企omthe 

whole population conditioned to take positive values， since the more time a subject spends in an 

on-site population， the higher its chance to be in the sample. Shaw (1988) has derived the 

distribution of a count variable on-site when the population distribution is Poisson. His 

derivation is based on a "hypothesized stratified population". A perhaps simpler interpretation is 

to assume that a sample is chosen approximately proportionaI to the number of times a subject 

engages in the activity of interest. Then we have a familiar case of biased sampling. For cases 

such as visits to recreationaI facilities， it is more accurate to assume that su剛氏tsare sampled 

proportional to the average length of time they spend in the facility. This however， wiII require 

additional assumption on the distribution of time spent in the facility， and may produce a result 

that is sensitive to the underlying distributional assumptions， therefore lacking robustness. 

A familiar formula for biased sampling is given by 

ダ(y)
J(y)=一一一，

(Y) 
(4.2) 

キ

where f denotes the density of the whole population， and J the biased density， which in this 

case corresponds to the density of an on-site population. Regardless of the form of f， it can be 

sh…E(会)寸市)=早川 Var(Y)*=ギ(引 whereY denot 

the variable of interest in the whole population， Y * the coηesponding variable in an on-site 

population， and λ= E(Y). A simple estimate of the mean parameter is given by the reciprocal 

l..i'、 1

01 - :> 一一一-n竺iYi 

Distribution of an on-site population co汀espondingto a baseline Poisson model is a 

dislocated Poisson distribution. So far， distributions co汀espondingto generalized count data 

models do not seem to have been studied. 1 will derive distributions of count variables in an on-
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site population for models introduced in Sections 2 and 3， and investigate their properties. 

4.1. Negative Binomial models 

Negative Binomial model is one of the most widely used parametric models for count-data. 

When the population distribution is Negative Binomial (2.7)， distribution of an on-site population 

is derived using (4.2) as 

• (y Iα川;ロY)(剖+1(会Jーl (4.3) 

which is a displaced Negative Binomial distribution with mean E( y' J=λ+ ~ + 1 and variance 
、， α

Var(Y')= ~(α+λ)11+土 1 respectively. The variance of this distribution is larger than that of 
守 Fαtαl

fλ1  
the whole population， which isλ11+一 1. Since there has been an increase in the mean value as 

lαl  

well， distribution of an on-site population does not always result in over-dispersion. In fact， it is 

1+αJ 
seen that over-dispersion occurs if and only if ::__:_ー>.:i，L

α 

Maximum likelihood method may be employed to obtain parameter estimates for this case， 

since the model is fully parameterized. Likelihood function co汀espondingto an on-site sample 

is given by 

L=自ぷι~ポ+1(志r-
1

(4.4) 

After some calculation， the log-likelihood is seen to be 

n I y;-1 I 

logL=:L1 :L1og(α+k)一(α十九)log(λ+α)+(Yi一1)logλI+n(α+1)log仏 (4.5) 
i~11 k=1 I 

where as before，λ= e
x
:
s. From this， first order conditions for the maximization of the 

likelihood function is derived as 

dlogL ， __~..n(α+l)+lrIlq| 
一一一=nlogα+一一一一+芝|芝一一一log(λ+α)一(α+Yi) 1 =0 
M α 台It:rα+k ~ ， " '<' I (4.6) 

and 

2T=山中+2[b-…)一一=。 (4.7) 
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respectively. Using the second condition，λ= exp(x;β) is re-expressed as 

ヱytXz-Zxt
λ= 

(1 +α)ヱx;

Since the first condition cannot be simplified further， numerical method is necessary to obtain an 

estimate for α. 

Distribution of an on-site population corresponding to a general mixed Poisson model (2.3) is 

given by 

reーλV(λV)y-l
P-(y iA) = I - ，..~ ~. ~(v)dv 

ぜ J (y -1)! 日

which can be rewritten as 

λYーl 忌(一1)Jλj 
P-(y iA) =一一一ーラ一一一一仏、

(y-I)!間 j! J'.' 

(4.8) 

(4.9) 

wl附 μ内 =Eら川 The mean and variance of an on-site distribution are seen to be 

E(ド)=E(印刷ノ2)=1+λEレ)and Var(ド)=AEレ)+λ.2E(V3 )_ A，2 (Eレ)jr町山ely，so 

ぉr…仇a附 it…th…r-disp山
When the distribution of the original population belongs to a linear exponential family， i.e. 

when the density of the counts can be expressed as 

P(ylλ)ニexp{A(λ)+B(y)+C(λ)y}， (4.10) 

the distribution of an on-site population will also belong to an exponential family given by 

P(y u.) = exp{ Aυ)+ B'(y)+C(λ) y }， (4.11 ) 

where A'(λ)= A(λ)+logλ，and B'(y)=B(y)+logy. 

4.2. SerIes models 

The form of GRS-model is quite complicated in the original population. Since CJ-model 

with Negative Binomial baseline distribution is compatible with the GRS-model with Gamma 

baseline density， 1 wilI derive the distribution of an on-site population for the CJ-model， which has 

a simpler and more manageable form. Distribution for the CJ-model in an on-site population 
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takes the following form 

ヱヱa"ajyh+j+1
可(yIλ，α)=f(ylλ，α)h j ， (412) 

ヱヱaka，mk+'+1

where as before， mk denotes the k th non-central moment of f (ylλ川 Fromthis， the mean 

and variance ofthe distribution is seen to be 

内
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叫
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ヱ
j
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ヱ
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E
 

and 

エヱa"a川+汁3L.L.aka，mω 1-1L.ヱa"ajmh+ j+2' 
Var(Y* )=~ j k ， 

lヱヱaka，m山 11 
respectively. The distribution is over-dispersed if and only if 

界aha/m，，+ j+3 -mh市 伊ん

Log-likelihood for an on-site population is seen to be 

log L十gf(y 
(4.13) 

In particular， when the baseline density is Poisson， the coηesponding distribution of an on-site 

population becomes 

λ守、ヱヱG内 yり l
p;(ylM)=LLL」

y! エエaka，mk+'+1 (4.14) 

From this， first order conditions for maximum likelihood estimation based on an on-site sample is 

derived as 
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I Lヱaka，mk+'+2I 
~IYì一えa"門

or equiva1ent1y， 

土[Yi-E(Y/ [Xi)]Xi = 0 

and 

I 2La〆+j+1
到豆ahajY ?|=o 

(4.15) 

(4.16) 

Estimates of parameters are obtained foIlowing the procedure for the case of a random sample 

合omthe whole population. Cameron and Johansson suggest simulated annealing since the 

model is non-linear in the parameters. 

4.3. Finite mixture models 

For finite mixture models with baseline Poisson distribution， distribution of an on-site 

popu1ation is given as follows: 

主P4，exp吋)
，ー11(yFー 1)! 

P (Yi [Xi'β，p)ニ Jー且 c -

LPkA;k 

(4.17) 

From this， the expected va1ue and variance of an 01トsitepopu1ation is seen to be 

ヱPj~
Eキ(宅)=I+if」-and respective1y. The 

ヱpん

白山 Define zij as an 

indicator variable that takes the va1ue 1 if observation i belongs to group j， and 0 otherwise. 

Then， the 10g 1ike1ihood of an on-site popu1ation is given by 
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10ψ  喜苔羽喜割[-卜ト寸可刊刊z匂》帆仇qμ内内川10均矧ゆO句矧g副(
t仕ヤ尚omwhich the first order conditions ar巴derived as 

丹2>υ(λ'1一λ山 (4.19) 

for j=l，...，c-l and 

LI>u丹ゐX;= CLP内)LL(人1-Y;)zUx， (4.20) 
k 1 

Since the model includes unobservable variables or “missing data"， EM algorithm is employed to 

obtain estimates of parameters. In addition， it is necessary to use a numerical method to 

maximize the expected log-likelihood (M-step)， since estimators cannot be obtained in a closed 

form. Derivation is much more complicated for an on-site sample compared to a random sample 

of the whole population， since parameters P j and λ'ij are no longer separable in the likelihood 

function of an on-site population. 

4.4. Models based 00 waitiog times 

Distributions of an on-site population co汀espondingto models based on waiting times are 

complicated. For the Gamma waiting time model， the distribution is seen to be 

yG(町，s) yG(町 +α，β)
P*(y 1α，β)=∞∞  

エG(ai，β) ヱG(低 β)

where 

， β 

(4.21) 

G(句1 ，β)=~ruan九-udu is an incomplete Gamma function. The term cannot be 
T(仰)~ 

simplified unless α= 1 ， which case co汀espondsto the simple Poisson model. 

Distribution ofGourieroux and Visser's local model in an on-site population is seen to be 

λλy-l i. -:-:-λ1 
P*(ylx)ニ一一一一¥I-M¥， +Mv+1一一|

(y-l)!1 J J"y+11 
(4.22) 

when individual heterogeneity v is absent， and 

r(a+叫 α日λJ1 11 iA i"7 λ(y+α+1) l 
P*(ylx)=一一一二一 ¥l-M，，+M"+I "'~.~，-: -/ 

T(α)T( y) (λ+α)日+YL ) Yγι (y + 1)(λ+α)J (4.23) 
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when v folIows a r(α，α) distribution. To obtain a maximum likelihood estimator using the 

local model， it is necessary to transform the model so that (4.22) or (4.23) becomes a proper 

density function for all values of M". 

Models based on waiting time distributions have complicated forms in the original population， 

and require computer intensive methods for estimation. Taking on-site samples add to the 

complexity ofthe model. It remains to be seen whether the model is robust to deviances企omthe 

underlying assumptions. 

5. Conclusion 

On-site sampling is a method that is easier to implement than random sampling. When data 

are expected to e対libita number of zeros， on-site sampling makes it possible to infer about the 

underlying distribution based on a relatively smalI sample size. 1 have derived distributions of an 

on-site population for some generalized count data models. When the distribution of the counts 

in the whole population is in a regular form， the corresponding distribution ofthe counts in an on-

site population is Iikely to have a manageable form as well. For the行nitemixture model 

however， on-site sampling adds considerably to the difficulty of the estimation process， since the 

parameters are no longer separable. A Monte Carlo comparison of the propeロiesof estimators 

based on an on-site sample and estimators obtained by random sampling is left for further study. 

An important estimation method that is not discussed in this paper is the generalizεd method 

of moments. Instead， focus is on models with flexible forms for the distribution of the count 

variable. It is to be noted that when there is a possibility of zeros being generated by an 

independent process， on-site sampling fails to provide information on the data generating process 

regarding thos巴 zeros. In such cases， it may prove useful to investigate the possibility of 

stratified sampling， combining random sampling and on-site sampling. 
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