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Abstract

The aim of this paper is to derive distributions of count variables based on generalized count data
models, when inference is based on an on-site sample. On-site sampling is a method where data
are collected from subjects that are engaged in an activity of interest {on-site population) at the
time of sampling. While the method inevitably implies selection bias, it is in general easier to
implement than random sampling. Furthermore, when a high frequency of zero values is
expected in the whole population, on-site sampling makes it possible to draw inferences based on
a relatively small sample size. After introducing various forms of generalized count data models,
distribution of an on-site population corresponding to each model is derived and their properties
studied. Estimation based on an on-site sample is also discussed briefly.
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1. Introduction

Count data refer to data taken on the number of events in a specified time interval. In many
microeconomic applications, we are interested in the dependence of a count variable on other
quantitative or qualitative variables, called regressors. Although count variables are discrete by
nature, there is little loss of information when their distributions are approximated by continuous
distributions such as the normal, provided the data consist mostly of large values. If this is the
case, classical econometric models may be employed for analysis. In contrast, when the data
include a number of small values, as is common with microeconomic data, it is essential to derive
discrete models for the counts. Such models are called count data models.

While interest in count data model is relatively new in econometrics, its role is becoming
increasingly important with the proliferation of microeconomic data. The most basic regression
model for count data is the Poisson model, where a count variable follows a Poisson distribution
with mean parameter that is a deterministic function of the regressors. Empirical findings
suggest however, that the Poisson assumption is not consistent with some features of real-life data,
and for this reason, various generalized count data models have been proposed. Some of these
features include heterogeneity of the population, observation of excess zeros, and dependence
between occurrence times of events. A brief survey of generalized count data models is given in
Sections 2 and 3, with emphasis on models based on flexible assumptions for the count
distribution.

Sampling method plays an essential role in the analysis of a count variable, since in many
cases data exhibit a high frequency of zeros. If random sampling is employed under such
circumstances, a large sample size is required to perform reliable analysis. When data are
collected only from items taking non-zero values, such inefficiency can be avoided. One such
method is to employ on-site sampling, where random samples are taken from a population of
subjects that are engaged in an activity of interest (referred to as on-site population) at the time of
sampling. Although the method inevitably contains sampling bias, it is in general easier to imply.
Furthermore, a smaller sample size is required to perform inference based on on-site samples,
since zero values are precluded in the sample. On-site sampling is discussed in Section 4, where
distributions of on-site populations corresponding to models of Sections 2 and 3 are derived.
Estimation methods are discussed briefly for each case.

It is assumed throughout the paper that data are taken in cross-section form (single

observation on the number of counts per each individual) unless noted otherwise.
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2. Parametric count data models

Count data models are used extensively in the area of reliability analysis, bio-statistics and
demography, where various models as well as estimation techniques have been developed. A
special feature of economic data is that the only information available is the number of event
counts over a specified time interval. Such data are sometimes called current status data in the
statistical literature. In contrast, in areas such as reliability analysis, it is common to assume that
event times are observed as well. Observation of current status data is a natural assumption when
data are collected in surveys. In general, it implies a loss of information compared to the case
where the event times are also observed, the exception being the baseline Poisson model described
bellow.

The most basic model of a count variable, sometimes called the baseline model, is the simple
Poisson model where the number of counts Y in a given time period (which is standardized to be

1) follows a Poisson distribution:

Py
¥

P(Y =y|)=POlM) = @1

Here, A=E(Y) is the mean parameter. In case of count data regression, it is customary to
assume that A depends on the regressors through the relation log A =x'f, where x denotes a
k dimensional column vector of regressors (x,...,x,) whose values are observed and S, a
kX1 parameter vector (f3,....,[3,) to be estimated from data. Then, E(Y)=A4= e P , so the
above specification ensures positivity of the expected value of the counts. The log-likelihood of

the Poisson model (2.1) based on observations (xi, y,-) i=1,...,n is given by
n , n n

log L= —2 e Py 2 yixi B+ zlog vl (2.2)
i=1 i=1 i=1

When event counts follow the Poisson model, there is indeed no shortage in the amount of
information we obtain through current status data, since in this case, inter-event times follow an
exponential distribution which has the famous memory-less property.

A serious drawback of the Poisson model is the restriction that expected value of the counts
must equal its variance. This follows since Poisson distribution is a one-parameter distribution.
Evidence from empirical data suggest however, that variance usually exceeds the mean (a case

called over-dispersion). In some cases, the data also exhibit an excess number of zeros compared
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to those expected by a Poisson distribution. Two types of models are commonly used to account
for excess zeros. The zero-inflated Poisson model, where zero is assumed to come from two
different sources, and the hurdle model, where the model consists of a two-part decision process
and zero is generated by an independent data generating process. For further details on these
models, see for example, Cameron, A. C. and Trivedi, P. K. (1998).

A second and equally serious limitation of the Poisson model is that it does not allow
heterogeneity within the population. An assumption of a homogeneous population is not likely to
hold in practice. To accommodate heterogeneity, it is often assumed that an unobservable
heterogeneity factor affects the expected value of the counts in a multiplicative form. More
specifically, for every observation i, it is assumed that E(Y;) = /T, = Av; = exp(x.f)V;, where v,
is an unobservable heterogeneity factor with E(v;)=1. Since heterogeneity is unobservable, it
needs to be integrated out of the distribution function to obtain the conditional distribution of Y

given x. Letting g denote the density of v, marginal density of the counts with

multiplicative heterogeneity is then seen to be

-Av y
POID= %g(v)dv, 23)

the mixed Poisson distribution.

Note that when regressors are observed with error (the errors-in-variables case) and no
heterogeneity is assumed, the resulting distribution of Y has exactly the same form as above. To
show this, let z;8=(x/+u)B where z; is a vector of observed variables and u;, a vector of
observation errors. Assuming as in the Poisson model, E(Y;)=exp(x/f), define & = exp(—uf)

and let g be the density function of &. Then

-AE Tevy
e %g(é)dé , @.4)

where A =exp(z;). It is not possible to identify whether mixing is due to heterogeneity or
errors-in-variables or both, unless there is additional information. In the following discussion, it
will be assumed that the model implies heterogeneity. This is done mainly for expository
purposes. It should be kept in mind that the same argument applies for the errors-in-variables
case as well.

Multiplicative heterogeneity does not change the expected value of Y, but changes its
variance and causes over-dispersion. As a result, zeros as well as large values are more

frequently observed than in the simple Poisson model. Regardless of the form of g, it can be
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shown that
Var(Y) = ar(v)+ 4 (2.5)
provided E(v)=1, a standardization employed for identification purposes. =~ When the
distribution of the count variable belongs to an exponential family, Shaked (1980) has derived a
more general result referred to as the Two Crossings Theorem. The theorem states that mixed
distribution always have heavier tails than the original distribution.

When the true model is the mixed Poisson distribution, consistency of MLE based on the
simple Poisson model is still valid. This follows since from (2.2), the first order condition for

maximum likelihood estimation of the Poisson model is seen to be
S (i -y, =0 2.6)
i=1

which holds as long as the relation between the mean of the counts and the regressors is valid. A
straightforward approach to estimating a mixed model then is to use the Poisson MLE and adjust
for the variance. A common method is to describe the variance as a function of the mean, the
most popular being Var(Y 11)=A+aA?, where a is a scalar parameter and p is some
specified value, usually 1 or 2.  This is the method of pseudo maximum likelihood. Using this
approach, no assumption is necessary regarding the form of the heterogeneity distribution.

A second approach to estimating a mixed model is to assume a parametric distribution for
heterogeneity. The form of the mixed distribution depends on the form of g, so in order to
estimate the model parametrically, it is necessary to specify the distribution of the unobserved
heterogeneity factor v. The most popular choice for the form of g is the Gamma distribution
I (e, ) , which results in a Negative Binomial for the distribution of the counts. The shape and
scale parameter of the Gamma distribution are set equal to accommodate the assumption that

E(v)=1. The corresponding distribution of the counts is seen to be

_ Ia+y) ((a Y( 2 Y
P(yix’l’a)_r(a)r(y+1)U+a) (ua) ’ @7

which is the Negative Binomial distribution with mean A=¢*P and variance /1(1+1J.
a

Parameter estimates are obtained by maximum likelihood method. It is to be noted that there are
other possible parameterization of the Gamma distribution, which will also lead to the Negative
Binomial for the marginal distribution of Y, but with slightly different parameterization.

In many empirical cases, the Negative Binomial model seems to fit the data fairly well.
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This does not necessarily imply that it is indeed the correct model. In fact, it may simply be the
result that the count variable follows an over-dispersed distribution that is a member of the linear
exponential family with two parameters, and that the functional form of variance (2.5) is known.
See Gourieroux, C., A. Monfort and A. Trognon (1984a,b) for details. Other choices for
heterogeneity distribution include inverse Gamma distribution by Dean, Lawless and Willmot
(1989), and lognormal distribution by Hinde (1982). Fully parametric methods may produce
biased results when the assumption on the form of the distribution does not hold, and often there is
no strong foundation for the assumption on the heterogeneity distribution.

When data are obtained in panels, a more elaborate model can be employed. See for
example, Hausman, Hall and Griliches (1984) for a detailed discussion on parametric estimation
of panel data. A time series data of the counts present a different type of difficulty, since the data
collected will typically be dependent of one another. One of the popular models used in this
instance is the binomial-thinning model, where counts from a previous time period are thinned
down while new independent counts occur within a given time period. For a detailed account of

the binomial thinning model, see AI-Osh, M. A. and Alzaid, A. A. (1987).

3. Generalized count data models

Assuming a parametric distribution for heterogeneity is somewhat arbitrary and mainly for
computational ease. With the advancement of computer technology, estimating models requiring
computer intensive methods have become less inhibitive. For this reason, various models in a
more general framework imposing less restriction on the distributional form have been proposed.

Several of these models are presented in this section.

3.1. Series models

Gurmu, Rilstore, and Stern (1999) developed a semi-parametric model (referred to as the
GRS-model) of the counts based on a series expansion for the distribution of unobserved
heterogeneity. Their model assumes that conditional distribution of the counts given the value of
heterogeneity follows a Poisson distribution, and the distribution of the heterogeneity factor v is
approximated by an orthonormal polynomial expansion. More specifically, the distribution of v

is given by
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1
g(v;)= Zw(vi)[PK(v,o]2 , (3.1)
where w{v ) is the baseline density of heterogeneity, Py (v;) denotes a polynomial of degree K,
2
and ¢= Jw(v,-)[PK (vi)] dv; is the constant of proportionality. Py (v;) is squared to ensure

positivity of the density of the counts. In particular, Gamma distribution is employed as the

baseline distribution of heterogeneity,

_ V,q_lﬂ.a v,
w(v;) = @ e 3.2)

and a generalized Laguerre polynomial is employed for Py (v;),

a oK) T(K+a) o
LK(Vi)—E(;(l r(a)r(ml)“”')‘ (33)

The model nests the Negative Binomial and the geometric count model as special cases.
Hence, it is a more flexible form of specification. Provided the density g(v) has finite-order
moments, it gives consistent estimators regardless of the form of g. The estimating equation is
quite complex and computer intensive methods are necessary to implement. The model can also
be extended to incorporate truncations or excessive zeros. For details, see Gurmu, Rilstone and
Stern (1999).

Cameron and Johansson (1997) developed a model (CJ-model) where the distribution of the
count variable itself is depicted using a series expansion. This model is attractive in that it allows
the case of under-dispersion (mean exceeding variance) as weli as over-dispersion. [t remains to
be seen whether it is possible to approximate the distribution of an arbitrary discrete variable using
a series expansion, and the model may not always prove to be parsimonious since it requires quite
a few polynomial terms to deviate significantly from the baseline distribution. Their model
assumes the following distribution for the counts:
h(yla)

= A .
P(yld,a)= f(yl )np(/l,a)

(3.4)

.
Here, f(ylA) is the baseline density, hp(yla)=2akyk is the pth order polynomial,
k=0

p P
a= (ao,al,...,ap)' is the vector of parameters, and 77, = ZZaka,mH, is a normalizing constant
k=0/=0

with m, denoting k th non-central moment of the baseline density f(ylA). The polynomial
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h,(y!a) is again squared to ensure positivity. The appropriate order of expansion is determined

via a model selection criterion such as AIC or BIC.

A reasonable choice for f(yiA) is the Poisson distribution, in which case the distribution of

the count variable is specified as follows:

(3.5)

e hAY b pOla) 2( A hi(yla)

P Aa)=
PO G A n,Ga)

When the baseline distribution is Negative Binomial, the corresponding distribution of the counts

is seen to be

ROl o Y2 yra-i
Ul aa= ¥ np(i,a)(/1+a] El( A+a j (3.6)

Cameron and Trivedi (1998) have shown that in general, Negative Binomial baseline mode!
fits the empirical data better. It is more flexible compared to the Poisson baseline model (3.5)
with the cost of estimating one additional parameter «. The Negative Binomial Baseline model
(3.6) corresponds to the GRS-model model with gamma baseline distribution for heterogeneity.
Empirical comparison by Cameron and Trivedi of a CJ-model with Negative Binomial baseline
distribution and GRS-model with Gamma baseline distribution for heterogeneity suggests that
performances of both models are compatible.

CJ-model is not derived as an approximation to the distribution of unobserved heterogeneity.
To interpret their model from this point of view, rewrite the mixed Poisson density assuming

exchangeability of integration and addition, as

1= _1/ )
FoIn=25 D Gy, 3.7
e g
<

where as before, v is the unobserved heterogeneity factor with E(v)=1,and u;,, = E(vj +"') is

the (j+ y)th non-central moment of heterogeneity v. Comparing equations (3.5) and (3.7),
CJ-model with baseline Poisson distribution can be interpreted as estimating the “‘weighted
average” of the non-central moments of heterogeneity by a finite polynomial of the observed
number of counts. It should be noted that CJ-model with Negative Binomial distribution as the
baseline distribution corresponds to estimating the non-central moment of heterogeneity in (3.7)

using higher order polynomial of the count variable.
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3.2. Finite mixture models

Another approach to modeling heterogeneity is to use finite mixture models. In this
approach, the count variable Y is divided into several latent classes, the number ¢ of which is
also estimated from data. When Y is generated from c groups each with a Poisson distribution
but with different parameters j; = (,B,j,ﬂzj ---,Bkj)’ J=1,...,c, the distribution of Y is given by

¢ %
P(x”,-ﬁwﬁf,p,M, (3.8)
j=1 Yi:
where p; denotes the mixing probabilities j=1,....,c with p=(p;.....p.), B=(B,...B.) isa
kxc matrix of parameters to be estimated, and 4; = exp(x 8 ;). For this model, the mean and

variance of the count variable Y, are seen to be

EM) =Y piA (3.9)
=
and
C C [ 2
Var(t) =3 pi%;+ 3, p % —{ZP,-%} (3.10)
j=1 j=1 j=1

respectively, so that E(Y;)=Var(Y)) if and only if A4, =4,=--4

; ... the case with no
heterogeneity. Altheugh the model implies discreteness of the heterogeneity distribution, the
approach provides good numerical approximation even when the true mixing distribution is
continuous. It is also straightforward to incorporate the case of excess zeros using this model.

The approach differs from the semi-parametric approach in Section 3.1 in that it changes the

mean-variance relationship, as is seen from (3.9) and (3.10). See Wang, Puterman, Cockburn and

Lee (1996) for further details.

3.3. Models based on waiting times

Models discussed in Sections 3.1 and 3.2 focus on the heterogeneity factor to generalize the
baseline Poisson model. Since the flip side of the number of event counts is the waiting time
between events, an alternative method of generalization is to consider the model in terms of the
waiting time distribution. Poisson model implicitly assumes that waiting times between
(k-1)th and kth event 7, (k=1,...,y) are independent and identically distributed with an

f()
—F(t)

exponential distribution. In this case, the hazard function ¢, = , where f(¢) is the
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density and F(¢) the distribution of waiting times 7, remains constant over time, To
generalize the model, various waiting time distributions may be employed. A straightforward
extension of the exponential waiting time distribution is the Gamma distribution. Based on the

assumption that waiting times are independent and identically distributed with density

ftla, ﬁ)=—%f“"e‘ﬂ’, Winklemann (1995) has shown that the distribution of the counts
follows
a-1 ay+i
P(yla,ﬂ)=e_ﬁ2L. 3.1D
= (y+i)!
When the waiting times are Gamma distributed, hazard function is either monotone decreasing or
monotone increasing. Moreover, negative duration dependence (hazard function is a decreasing
function of time) causes asymptotic over-dispersion of the count variable, whereas positive
duration dependence causes asymptotic under-dispersion. In order to obtain a Gamma count

s

a

regression model, it is further assumed that =¢%7 where as before, x denotes a %k

dimensional column vector of regressors (x,...,x;) . The resulting likelihood function is
nonlinear in o and y, and requires iterative numerical algorithms for estimation.

Gourieroux and Visser (1997) constructed a model based on the assumption that waiting times
are influenced by several factors; an observable individual specific factor x;, unobserved
individual specific factor (heterogeneity factor) that is constant through the observation period v,,
and an unobservable individual and spell specific factor 7, , where k denotes the number of
events so far. Inclusion of 77, in the model implies that waiting time between the (k —1)th and
the kthevent 7, depends not only on individual factors but also on the number of events so far.
According to their model, the heterogeneity factors satisfy the following:

Al: v.,ny,--+n,, - are independent of x;, and v,;’s are i.i.d. random variables.

A2: Conditionally on (x,v,n,), duration times 7, k=1,---, follow an exponential distribution
independently with parameters A(x,v,77,).

A3: The parameter A(x,v,1,)is decomposed as A(x,v,77,) = A(x,v)(1+ 1, L

Observed variables are the number of counts y and values of individual specific factors x;.

Conditional distribution of the count variable based on the above condition takes a
complicated form, from which we need to derive the marginal distribution to pursue estimation.

This makes the model unattractive. Instead, Gourieroux and Visser employ a local
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approximation of the model based on the assumption that unobserved heterogeneity is independent
of the regressors, and that individual and spell specific factors 77, are small. Expanding the
characteristic function of the waiting time using this assumption, they obtain the local count data

model as

P(ylx)= P, (A)+ M, Py (A= Mg Py(4), (3.12)
— Y —
where P,(A)= 1V5P(Y =y)with M, =Yn,, M, =EM,),and M;=0.
k=]
When A=E(Y)= e*? s independent of v, so that heterogeneity stems only from x; and
1N, » the local distribution of the counts becomes
-Aqy

e A e A
= 1-M_ +M, ,—].
P(ylx) " I: y My (y+l)}

This is the model used by Gourieroux and Visser for estimation. To obtain a model that

(3.13)

corresponds to a generalization of the Negative Binomial model, assume that v follows a

I'(a,a) distribution. Then, 1—3),(/1) is Negative Binomial and the local distribution of the

counts is seen to be

(3.14)

P(y[“”l)zpy(l){l—ﬁ_‘,+A7_‘,+lOH'YH A }

(y+1) A+«

4. On Site Sampling

When the population distribution of a count variable contains a mass at zero, random sampling is
likely to produce a sample with many zeros. To pursue reliable inference in such a case, a large
sample size is necessary so that enough non-zero values are observed. Instead, on-site sampling
takes random samples from an on-site population, that is, from a population of subjects engaged in
an activity of interest at the time of sampling. For example, if we want a sample on the number
of visits to hospitals during a certain period, an on-site sample will take random samples from
patients visiting a hospital on a particular day. This sampling method is in general easier to
implement than random sampling of the whole population, and saves a considerable amount of
time and cost.

A slightly different form of sampling that is sometimes confused with on-site sampling
consists of drawing a random sample from a population of items with positive data values. For

example, we could draw a random sample from the owners of registered vehicles, etc. In this
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case, the sample distribution P is simply a conditional distribution of the population distribution,
that is

POY____POY) wn
P(y>0) 1-P(y=0) '

P(y)=P(yly>0)=

This type of sampling method has limited usage, for information on data values is usually not
available prior to sampling.

When discussing on-site sampling, it is essential to consider sampling bias. Note that taking
random samples from an on-site population does not correspond to a random sample from the
whole population conditioned to take positive values, since the more time a subject spends in an
on-site population, the higher its chance to be in the sample. Shaw (1988) has derived the
distribution of a count variable on-site when the population distribution is Poisson. His
derivation is based on a "hypothesized stratified population". A perhaps simpler interpretation is
to assume that a sample is chosen approximately proportional to the number of times a subject
engages in the activity of interest. Then we have a familiar case of biased sampling. For cases
such as visits to recreational facilities, it is more accurate to assume that subjects are sampled
proportional to the average length of time they spend in the facility. This however, will require
additional assumption on the distribution of time spent in the facility, and may produce a result
that is sensitive to the underlying distributional assumptions, therefore lacking robustness.

A familiar formula for biased sampling is given by

s YY)
f (y)———E(Y) ) (4.2)

where f denotes the density of the whole population, and f* the biased density, which in this
case corresponds to the density of an on-site population. Regardless of the form of f, it can be
2
2 3 2
shown that E(%J=%, E(Y*)= E(: and Var(Y)* =ﬂ%—)—[ﬂ;—)] , where Y denotes

the variable of interest in the whole population, Y * the corresponding variable in an on-site

population, and A=E(Y). A simple estimate of the mean parameter is given by the reciprocal
11
of —2—*
nay
Distribution of an on-site population corresponding to a baseline Poisson model is a
dislocated Poisson distribution. So far, distributions corresponding to generalized count data

models do not seem to have been studied. I will derive distributions of count variables in an on-
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site population for models introduced in Sections 2 and 3, and investigate their properties.

4.1. Negative Binomial models

Negative Binomial model is one of the most widely used parametric models for count-data.
When the population distribution is Negative Binomial (2.7), distribution of an on-site population
is derived using (4.2) as

. _ I(a+y) [« ey
P(yla"l)"r(a+1)r(y)kz+a) [/’Haj “3)

which is a displaced Negative Binomial distribution with mean E( ) A+— A +1 and variance
o
£ A 1 . . s
Var(Y )=—(a+ﬂ,) 1+— | respectively. The variance of this distribution is larger than that of
a o

. S A . . .
the whole population, which is /l(l +—j. Since there has been an increase in the mean value as
o

well, distribution of an on-site population does not always result in over-dispersion. In fact, it is

a
> A,

. . . . 1+
seen that over-dispersion occurs if and only if

Maximum likelihood method may be employed to obtain parameter estimates for this case,
since the model is fully parameterized. Likelihood function corresponding to an on-site sample

is given by

o Te+y) (o YU 4 YT
Hr(a+1)r(y,)u+aJ (l+aj ' @9

After some calculation, the log-likelihood is seen to be

n | y-l
log L o< Z{Elog(a-&k)—(a-i-yi)log A+a)+(y,~1)log l}+n(a+l)loga, 4.5)
i=1[ k=1

where as before, 1=¢"?_ From this, first order conditions for the maximization of the

likelihood function is derived as

n’_)',-—l
g—la&;i=nloga+n(ia+l-)-+§ ;ﬁ—log(/1+a)—(a+yi)j|=0 (4.6)
and
dlog L n(@+1) &
=nl +—t ——log(A+ + =0, 4.7
2 e, 2;1 i log(Ara)-(aty) @7
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respectively. Using the second condition, A =exp(x.f) is re-expressed as

n n
2 YiXi— Z Xi }
i=1 i=l .

(1+a)§":x,
i=1

2':

Since the first condition cannot be simplified further, numerical method is necessary to obtain an
estimate for «.

Distribution of an on-site population corresponding to a general mixed Poisson model (2.3) is

given by
y-1
P'(y1 )= J‘L‘lj;'vg(v)dv “38)

which can be rewritten as

y-1 Jaj
P*(yll)—(l_l)‘z( 1), A My (4.9)

where u;  =E (vj y ) The mean and variance of an on-site distribution are seen to be
E(Y*)=E(v)+ /'LE(V2 ) =1+ /?.E(v2 ) and Var(Y*)= /?.E(v2 )+ /?,ZE(V3 )— 2 (E(v2 ))2 respectively, so

for an on-site sample, it is seen that over-dispersion occurs if and only if E(v3)2 (E(vz) +—

When the distribution of the original population belongs to a linear exponential family, i.e.

when the density of the counts can be expressed as

POy =exp{A(L)+B(»)+CA)y}, (4.10)
the distribution of an on-site population will also belong to an exponential family given by
P(yl))=exp{A(A)+B(y)+C(A)y}, @.11)

where A'(A)=A(A)+logA,and B(y)=B(y)+logy.

4.2. Series models

The form of GRS-model is quite complicated in the original population. Since CJ-model
with Negative Binomial baseline distribution is compatible with the GRS-model with Gamma
baseline density, [ will derive the distribution of an on-site population for the CJ-model, which has

a simpler and more manageable form. Distribution for the CJ-model in an on-site population
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takes the following form

h+j+1
S S aa
Py (ylAa)=f (¥ Aa) e (4.12)

)
ZzakalmkHH
ko1

where as before, m, denotes the k th non-central moment of f( yll,a). From this, the mean

and variance of the distribution is seen to be
ZZahajmhﬂu
* h j
Bl )eee———
zzakalmkﬂﬂ
ko1

and

2
2 zalzajmh+j+3 Z Zakazmk+z+1 - {Z zalxajmh+j+2']
j k1 j

Var(Y*)= i P ,

[zzm ]

ko1

respectively. The distribution is over-dispersed if and only if

2
zzahaj(mh+j+3 _mh+j+2)zzakalmk+l+l >[22aha1mh+/+2J :
ho k1

hoj

Log-likelihood for an on-site population is seen to be

logL="y|log f(y|ﬂ(x,-,/3))+log[ZZaha,y"”*‘ ]—log[zzaka,mk+l+l|A(x,-,/3),a] :
k!

h j

(4.13)

In particular, when the baseline density is Poisson, the corresponding distribution of an on-site
population becomes
bt j+1
gy 24
e AR

¥ zzakalmkHH

ko

P,(ylAa)=

(4.14)

From this, first order conditions for maximum likelihood estimation based on an on-site sample is

derived as
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n zzakalmk +42

z m o (4.15)
or equivalently,

_jZl[» ~EQ 1)y =

and

J T e

2 T - (4.16)

i=I Zzaha,‘yhﬂﬂ zzahajmh+j+l
b hoj

Estimates of parameters are obtained following the procedure for the case of a random sample
from the whole population. Cameron and Johansson suggest simulated annealing since the

model is non-linear in the parameters.

4.3. Finite mixture models
For finite mixture models with baseline Poisson distribution, distribution of an on-site
population is given as follows:

i A exp(=4;)
= (y; —D!

Z PrAi
k=l

4.17)

P (y;1x.B.p)=

From this, the expected value and variance of an on-site population is seen to be

2
c C
ij 2’ ZPJ ZP, [ijﬂ‘?jl
E*(Y.)=1+fl_ and Var*(Y,-)=1+ = 457 j=1
C ¢ 3

> Py ]Z:;Pj ij ZP; ij (ipj/l..]
=

respectively.  The

7

2
C [
distribution is over-dispersed if and only if Zp i Zp i _[2 p j/lfjJ . Define z; as an

j=1 i=1

indicator variable that takes the value 1 if observation [ belongs to group j, and 0 otherwise.

Then, the log likelihood of an on-site population is given by
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n c
logL:ZZ -z log(Zpk/lik )=z log (y; =Dz log pj +2z;y; log A —z; 4 (4.18)
i=l j=l k

from which the first order conditions are derived as

szzuuif —Aic)=(2pkllk)z;” (4.19)
i k i

for j=1..c-1 and

Zzzlj b ’{ijxi = (Z Prlik )ZZ(’{U =i )Z(/xz (4.20)
i k i

Since the model includes unobservable variables or “missing data”, EM algorithm is employed to
obtain estimates of parameters. In addition, it is necessary to use a numerical method to
maximize the expected log-likelihood (M-step), since estimators cannot be obtained in a closed
form. Derivation is much more complicated for an on-site sample compared to a random sample

of the whole population, since parameters p; and 4; are no longer separable in the likelihood

function of an on-site population.

4.4. Models based on waiting times
Distributions of an on-site population corresponding to models based on waiting times are

complicated. For the Gamma waiting time model, the distribution is seen to be

P*(yla B)= zG(ay,ﬂ) _yG(ay+a,/3)’ 21

S p) 3G p)
i=1 i=1

where

1
I(om)

Glay,p)= jum'_le_“du is an incomplete Gamma function. The term cannot be

0

simplified unless « =1, which case corresponds to the simple Poisson model.

Distribution of Gourieroux and Visser’s local model in an on-site population is seen to be

-Aqy-1 - .
Px(yln=f2 l—M<+My+,L (4.22)
(y—-1! ? y+1
when individual heterogeneity v is absent, and
) @ gyl — —
P*(y]x): r(a+)) a’i . — ‘+ \'+1M (4'23)
re)rey) A+a)* T (y+h(A+a)
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when v follows a I'(@, ) distribution. To obtain a maximum likelihood estimator using the
local model, it is necessary to transform the model so that (4.22) or (4.23) becomes a proper
density function for all values of M v

Models based on waiting time distributions have complicated forms in the original population,
and require computer intensive methods for estimation. Taking on-site samples add to the
complexity of the model. It remains to be seen whether the model is robust to deviances from the

underlying assumptions.

5. Conclusion

On-site sampling is a method that is easier to implement than random sampling. When data
are expected to exhibit a number of zeros, on-site sampling makes it possible to infer about the
underlying distribution based on a relatively small sample size. 1 have derived distributions of an
on-site population for some generalized count data models. When the distribution of the counts
in the whole population is in a regular form, the corresponding distribution of the counts in an on-
site population is likely to have a manageable form as well. For the finite mixture model
however, on-site sampling adds considerably to the difficulty of the estimation process, since the
parameters are no longer separable. A Monte Carlo comparison of the properties of estimators
based on an on-site sample and estimators obtained by random sampling is left for further study.

An important estimation method that is not discussed in this paper is the generalized method
of moments. Instead, focus is on models with flexible forms for the distribution of the count
variable. It is to be noted that when there is a possibility of zeros being generated by an
independent process, on-site sampling fails to provide information on the data generating process
regarding those zeros. In such cases, it may prove useful to investigate the possibility of

stratified sampling, combining random sampling and on-site sampling.
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