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Conditional and on-site sampling of count data models
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1. Introduction

It is often assumed in theoretical studies that statistical inference is based on data chosen
randomly from the entire population. This is not, however, a realistic assumption in many cases,
and often we are forced to work with biased or incomplete data. In economics and other social
sciences, where controlled experiments are difficult, this tendency is even more prominent. When
data are obtained by a survey for example, individuals have the freedom to choose whether or not
to participate in the study, and this is likely to cause bias in the sample. In other cases, we choose
to collect data from a sub-population, not the entire population, and this could also result in a
biased sample. Two methods of collecting data from a sub-population are the so-called conditional
sampling and on-site sampling.

Conditional sampling refers to the sampling scheme where data are observed under the

condition their values exceed a certain number, most likely zero. An example is when a study is



conducted on the number of traffic violations, and data are collected from the list of those who
have a previous record of traffic violations. By nature, this method excludes zero values in the
sample. Another sampling scheme often confused with conditional sampling is on-site sampling.
When we want to study how the number of visits to the doctor depend on the patient’s age, sex,
etc., we often choose to take a sample from patients who are present at a hospital (on-site) on a
particular date and at a particular time. A sample obtained in this fashion not only excludes zero
values but is also biased toward larger values. Nevertheless, this type of sampling is employed
regularly since it is often easier to take samples from items known to take positive values,
especially when many zeros are expected in the data. In addition, if used properly, an on-site
sample is likely to produce more accurate parameter estimates than a random sample based on the
same sample size. The important point is not so much in trying to avoid biased sampling schemes
but to acknowledge the type and magnitude of the bias so as to correctly assess its relation to the
parent population.

This paper provides information on the bias of the two sampling methods described above,
namely, conditional sampling and on-site sampling In addition, this study describes the -
characteristics of each method and discusses their relations to each other and to the distribution of
the parent population. The two methods are often confused with one another in empirical studies,
but the distributional features are distinct and ignoring their differences could result in a
misleading conclusion.

Discussion is limited to the sampling of discrete variables, since conditional sampling method
is valid only for count data, and the emphasis is on cases where a count variable is dependent on
quantitative explanatory variables, known as count data models. Note that in each of the two
sampling schemes considered, the method itself involves random sampling, but the population
from which the sample is taken is not the entire population, but a biased sub-population, and hence
results in a biased sample.

In Section 2, conditional sampling and on-site sampling methods are reviewed for discrete
variables in general. Both methods produce biased samples of the parent population, and among
these two, on-site sampling method has larger bias as well as larger variance. Section 3 deals with
count data models and distributions of response variables under conditional and on-site sampling
methods. Section 4 extends these models to cases where data are also truncated from above, and
likelihood functions are then derived for both sampling methods. Section S concludes this research.

Throughout this paper, p(y)= P(Y = y) denotes the probability of a discrete random variable Y
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in the parent population, unless otherwise noted.

2. Truncated at zero models--- biased sampling

2-1 Conditional sampling

When we want data on the number of times an individual participates in a particular activity
or event, it is sometimes easier to take a sample from the list of those who have participated in the
activity (event) at least once. If this type of sampling is employed, individuals without any
previous record of participation have no possibility of being sampled. In other words, the obtained
data will be truncated at zero. This type of sampling will be referred to as conditional sampling.
For example, when a list is generated from the E-mail addresses of people who visit a paritcular
website and a sample is chosen randomly from that list, this would be conditional sampling.

Under this sampling scheme, at least one occurrence of the event of interest,i.e.participation
in a particular activity is the necessary condition to be included in the list, which will be called the
conditional population. A conditional population, then, is a sub-population composed of
individuals taking positive values only. The probability of the number of event occurrences for
individuals in the conditional population is the probability of the count variable conditioned to

take positive values, and so is given by

Pe)= Pl 1Y > 0)= s PO @)

where the subscript C stands for conditional population, and p(y)= p(Y = y) denotes the

probability function of the count variable Y in the parent population. The expected value and

variance of the conditional population are derived as

iP(Y>k)
__EY) =
E(YC)_P(Y>O)_ P(Y > 0) (2:2)
and
1 S _AE@)F
V(Yc)—m' y2:'|y p(y) PO 0) (2.3)

respectively. Here, E(Y) denotes the expected value of the count variable in the parent
population. When p(0) = P(Y > 0) > 0, the expected value of the conditional population exceeds

that of the parent population. In other words, this sampling procedure is biased. It can also be

shown in a straightforward manner that ¥ (¥, ) < ¥ (¥) ,regardless of the distributional form of Y,



that the variance of the population of individuals conditioned to take positive values is smaller
than that of the parent population.
As an illustrative example, let us consider the case where the count variable follows a

Poisson distribution. The Poisson model is the most basic model of discrete variables, and is given
by

-A

_e N
r(y)= EEYIRE (2.4)
where A is the mean of the parent population. Probability of the corresponding count variable

Y, in the conditional population is given by
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from which the expected value is obtained as

E(Ypo)= l ’1_1 = 1+%+ Z By, (-1 where B, is a Bernoulli number.
—e k=1

Variance is given by

2 -4
V(re) = —A - A

S [t}

Distribution of the conditional population is clearly under-dispersed, that is, the mean exceeds the

variance. Note that mean and variance in the parent population are equal (referred to as equi-

dispersion) for the Poisson model.

2-2 On-site sampling

When searching for oil, larger oil fields are more likely to be discovered than smailer ones
because of their sizes. This type of occurrence, well acknowledged for cases with continuous
variables, is known as length-biased or size-biased sampling. Since larger values are likely to be
included in the data, the obtained sample is biased and an estimation should be carried out with
this in mind. What is less known is the fact that similar circumstances exist when sampling
discrete data. When we want data on the number of visits to a certain site and we choose an on-site
sample, i.e. a sample chosen randomly from the population of individuals present at the site of

interest on a pre-selected date and time (the on-site population), then individuals will have a
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bigger chance of being selected if they are often at the sampling site. This point is overlooked in
many empirical studies, and often, conditional distribution of the previous section is used to
estimate when in fact it is more appropriate to use the on-site distribution as derived below.

While on-site sampling method requires choosing items randomly on-site, it not only fails to
pick up zero values but also produces positive bias in the sample. As already stated, this stems
from the fact that on-site population is a sub-population composed of individuals on-site at the
time of sampling. Individuals often at the site have a higher probability of being in the on-site
population, and thus a higher probability of being selected in the sample. Probability of a count

variable in an on-site population is related to that of the parent population by

yév((yy)) - wy) @2.5)
Y P(Y > k)
k=0

ps(y)=

under the assumption that the probability of being on-site is proportional to the value it takes. Note
that it is more accurate, in this case, to assume that an item’s probability of being on-site is
proportional to the length of time spent at the sampling site. This, however, causes significant
complexity in the model, whereas results obtained using such models are most likely, barely
different from the simplified version employed here. The mean and variance of a count variable

Yy in an on-site population are related to that of the parent population by

E(r?
E(rg)= E((Y)) (2.6)

and

E(Y)

v(ry)= E(IY_)(E(}”)_M] 2.7

respectively. The expected value of Yz exceeds the mean of the parent population, since

E(Ys)-E(Y)= ﬁ[E(Y2 )-{EM)¥ ] Variance of Y3 exceeds that of the parent population if

and only if
ECHE )+ [EN]P b ErHfEr ) + [E]2 )
For Poisson distributed count variables, E(y;)= M’l;]):xﬂ and V(Yz)=A, so the

distribution is also under-dispersed using this sampling scheme.

2-3 Relation between conditional and on-site sampling

Intuitively, it seems that bias of a count variable in an on-site population should be larger in



magnitude than bias in the conditional population, since on-site sampling has a tendency to select

larger values. A formal proof is given below:

Theorem For Y discrete, E(Yyz)> E(Y.) regardless of the form of the distribution.

Proof . It is necessary and sufficient to show that

E(Y?)  _EQ)
E(Y) ~ 1- p(0)

regardless of the form of the distribution. This is equivalent to showing

that
E@xHipr >0}z {E()F . which is a sharper version of the well known Cauchy-Schwartz

inequality. But,
ExHpy >o-{EWF

2
=Y ¥ oY, p»- {2 ,vp(y)}
y=I y=l

y=1

=Y kpty+ Y (P + kD) p()pk) = Y k2 p(k) =2 jkp (j) pk)
k=1

k=1 j<k J<k
=Y (G-6)? p(j)plk)

Jj<k
> 0.

Similarly, it can be shown that variance of a count variable in an on-site population exceeds

that of the conditional population.

Lemma For Y discrete, V(Yy) 2V (Y.) regardless of the form of the distribution.

Proof. It is necessary and sufficient to show that

1 E(Y3)—{E(YZ)}Z]> 1 {i yz,')(y)—_{E(Y)}2 ]

E(Y) E(Y) P(Y >0)| &, P(Y > 0)

which is equivalent to showing that

P> FErHEm -EaH})s EOFPE >0 v2r0) - EE ).

y=1

To prove the inequality of above, it is sufficient to show that

EMY + EYHEMPE > 0F -{p > 0P {Ea)f -y > ofper ) fEmF >o0.

Rearranging terms, it can be shown, as with the case of the mean that



A note on conditional and on-site sampling

ENY + ECHENPE >R - {pr > PEEHF - e > oHer H Rem) P
ey -pa s o) Rl EHEOPE > 0} P > oMHer ) Hem) R ]
> HEmpe s o3- e > o H e

=Y (k- i)k - Hp()plk)

j<k
> 0.

To study the distributional differences of the two sampling schemes in more detail, recall that

when the distribution of a count variable ¥ in the parent population is Poisson, the corresponding

» - - _l y
distribution of Y- in a conditional population is given by pc (¥ )=1 1_1 %, whereas,
e !
~A4y-1
distribution of Y3 in an on-site population is given by ps (¥ )= e(y+1),. For Y., probability

pc (k) for every & is simply the probability of the parent population multiplied by a constant
1-e~*. The relative magnitudes of the probabilities, therefore, are identical to that of the parent
population. On the other hand, the probability distribution of Yy is displaced (shifted) entirely to
the right. This distinction occurs since on-site sampling has a tendency to choose variables with
larger values, regardless of the distributional form of Y . Ignoring these fundamental differences
and confusing the two methods results in an incorrect assessment of the parent population. It can

indeed be shown that for any discrete Y, probability of Yz exceeds that of Y. for values &
E(Y)
I-p(0)~

such that & >

3. Count data models
3-1 Multiplicative heterogeneity models

In many cases, the objective of studying discrete data is to specify the dependence of a count
variable on one or more quantitative or qualitative observable variables. A typical approach to this
problem is to employ regression techniques. The most basic model of count regression is the

simple Poisson model, where the response count variable Y follows a Poisson distribution

-2
P(Y = y]A) = p(JA) = £ y!'ly ,

and the expected value A = E(Y) is related to the m dimensional column vector of regressors
x=(x{,...,x,) by the relation logA=xf. Note that B is a mxl parameter vector
(By,---sB,) to be estimated from the data. Then, E(¥Y)=A= e*P | so the specification of above

ensures positivity of the expected value of the counts.



The Poisson model does not allow heterogeneity in the population and also imposes a
restriction that the variable is equi-dispersed. Its use in practice, therefore, is limited. To allow
heterogeneity, it is often assumed that E(Y;) = /T., = A,v, =exp(x,B)v,; for every observation i,
where v, is an unobservable random variable representing heterogeneity of item /. This type of
model is called a multiplicative heterogeneity model. For identification purpose, v is
standardized to have expected value one, i.e., E(v)=1. Since v cannot be observed, we need to
integrate this factor out to estimate the model. Letting g denote the density of v, the marginal
probability of count variable Y with multiplicative heterogeneity given the values of explanatory

variables, is derived as

-Av (lv)y

ply0) =2 g(v)dv G.1)

a mixed Poisson distribution.

Probability of ¥ in a conditional population, for this case, is given, using (2.1) and (3.1),by

-Av
J_(_Mg(y)dv
O =520 - (3.2)
PV =Py >0) 1= o(Av)
from which the expected value and variance are derived as
__EM) _ AE(Vv) _ ) 33
E(YC)‘P(Y>0)_1—<p(/1v)_1—go(/1v) (3-3)
and
PEWF 2
2 2 _
V¥e)= - (p(ﬂ. ) PEVY)+AE(v) - = oY) =1 (p(l ) AEWV)+A o) | 34

respectively. Note here that ( denotes the characteristic function of the heterogeneity factor v .

2
—p(AvV) < ———=— {E(v)} or equivalently, if
E(v?)
{1-p(Av)}E(v?) <1,and over-dispersed if {i-pAV)}EV?) > 1.
For on-site population, probability of Y is given, using (2.5) and (3.1), by

This  distribution is under-dispersed if

e M (iv)’
yp(y[x) I G-n W4V 35
Pr(x) = By - T , 5)

from which the expected value and variance are derived as

E(Yp)=1+AE(v?) (3.6)
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and

V(YB):AE(VZ)MZE(W)—AZ{E(VZ)}Z 3.7

respectively, Over-dispersion occurs if and only if Ev 3> {E (v)? F + 11—2

3-2 A parametric example

Depending on the parametric form of the density g, various heterogeneous count data

models can be proposed. A popular method is to assume that heterogeneity factor v follows a

Gamma distribution I'(a,or) , where the value of parameter « is to be estimated from the data.
For specification purpose, the distribution is standardized to have expected value one. This

assumption leads to a Negative Binomial distribution for the count variable Y, that is

o % Acr) = Ta+y) ( a )"( A )y. (3.8)

Te)T(y+ D\ A+a j \ A+
Many empirical studies show that negative binomial model does indeed fit the data very well,
and therefore may be considered as a preliminary candidate of a parametric count data model with
multiplicative heterogeneity. Expected value and variance of Y for this model are given by 4
and A +%2. Using (3.3), (3.4) and (3.8), the mean and variance of Y- in a conditional
population are derived as

E(Ye) = A

and

V(Ye)=—A 2 1+é————‘——7 +A
(a+l) (a+).)

(24
respectively. The distribution is over-dispersed if and only if [L) <—L_. Mean and
o+ A a+1

variance of Y in an on-site population are given, using (3.6) and (3.7) by

S

_a+A+al
Blr,)=2thted _y, g, 2
and

_ Mo+ a+A)
a2

V(¥g)



2
respectively. Over dispersion occurs when 4 > -& I
o+

4. Right truncated models

When making observations on a discrete variable, data are often truncated from above. A
typical case is when data are collected in surveys, and participants are asked to count the number
of certain events, with the highest category in the questionnaire being “» or more”. In this section,
estimation methods of count data models with this type of censoring, where observations are
truncated from above in a deterministic manner, are discussed. It is assumed that sampling is done
either from a conditional or an on-site population. In other words, the observed data are censored

both from the right above and the left below.

4-1 Likelihood function with right truncation
Suppose data are truncated at value k, where & is a positive integer. Probability of a count

variable ¥ with deterministic right censoring is given by

py) if y<k
pr()={P(Y 2k)=3.p(j) if y=k> “.1)
=k
o if y>k

where the subscript R denotes right truncation. Using this, the expected value of a count variable
Ycx in a conditional population with right truncation is obtained as
k-1

o )~ k)
E(YCR)_;P(Y>O)+§P(Y>O)’

which, after some calculation, yields

E(Yep) = k+5—ps Z(y Kp(y)- 4.2)

1- P(O)
Expected value of a count variable Y, in an on-site distribution with right truncation, on the

other hand, is given by

k-1
> G -b)p(y)- 4.3)

- 1
E(Ygr)=k+ B &

In general, likelihood function of a count variable with right truncation takes the form



A note on conditional and on-site sampling

L=TTroo]lIP0r 2k

yi<k yi=k
from which the log-likelihood function is derived as

logL= Y log p(y;)+ 3 log P(Y 2 k) (4.4)

yi<k yi=k

In particular, the log-likelihood of a conditional sample with right truncation takes the form

log Lg = }:{a ~d,)log p(y)) +d, log(zpm]—log{l - p(O)}} (4.5)
i=1 J=k
where d.:{o i y"<k.
L oy zk
Likewise, the log-likelihood of an on-site sample with right truncation is given by
log Lgg =2[a ~d;)logy,p(y;) +d, log[zjmn)—log{ii(n}} : (4.6)
i=l j=k

where again, 4, is defined as above and E(r) denotes the expected value of the count variable

Y in the parent population.

4-2 A parametric example
The log-likelihood of a Poisson count data model with right truncation, based on n

observations from a conditional sample (x;,y;) i=1,...,n is given by

n

loglep = 2{(1 ~d)log &R, d,-log{ i#]_ fogll— ¢ )J ,

N
i=1 Vit =k

which, after some calculation, yields

logleg = —n{/l + log(l —e* )}+

i

n
= J=k

{(1 ~d;)y;logA—(1-d;)log(y;1)+d; ’Og[i%ﬂ :

As before, A= ¢*B . Since the estimates cannot be obtained in a closed form, estimation needs to
be carried out using numerical methods, for example, the algorithm developed by Berndt, Hall,
Hall, and Hausman (1974). The log-likelihood function of an on-site sample with right truncation

is obtained in a similar fashion, and is given by



logLgp = —nlogl+2}i(1—d) logy; +y;logA—A)+d, ]Og[z e_ 1)1”
i=1

As a more sophisticated example, consider the negative binomial model defined in section 3

3

that is,

S r(l‘;(;:yyjl)[lia )a(iia )y’

allowing for multiplicative heterogeneity. Log-likelihood of this model based on a conditional

sample with right truncation is given by

n r . — j -
loglrp = Z[(l —-d; ){log F(((;_:’yl’)) +y; loga i A}_*_ d; Iog[z%(a i F) )/ H
i J=k

i=1

(24
_ _ |« o
nlogTi(a) nlog[l (a+l) }H’abg(owl)'

For on-site sample with right truncation, the corresponding log-likelihood is derived, after some

calculation, as

=— —nl x
logLyp =—nlogA—n ogl"(a)+nalog(a+l)

Haty) o+ ) -
+2(1—d){logy,+log o, y) Vs og } Zdl {ZI?(_])J(O(%T}

i=1 J=k

Here again, the estimates cannot be obtained in closed form, and numerical methods need to be

employed in order to obtain approximate solutions.

5. Concluding remarks

Conditional sampling and on-site sampling are two convenient ways of gathering data on
discrete variables. When employing these sampling methods, however, one must be careful which
method he or she is using, to correctly assess the type and magnitude of the bias involved. Failure
to acknowledge the distributional feature of each sampling scheme results in a misleading
conclusion. It must also be emphasized that since the two methods fail to give information on zero
values, these methods do not provide any means to test whether or not zero values are generated
from the same distribution.

In many cases, it is indeed natural to assume a fundamental difference between a zero and a
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non-zero factor. A typical model that accommodates this type of departure is the hurdie model.

This model assumes that

p1(0) if y=0

PO (- po) 22 i y>0

where p, and p, denote possibly distinct probability functions. It collapses to the regular model
when p,(y)= p,(y) for every y . Using conditional or on-site sampling method, an estimate
for p, is obtainable using the arguments in this paper. Another source of information is necessary,
however, to estimate p; and/or to test whether p,(y)= p,(y) forevery y .

Often, elaborate models are employed to describe the distributional form of a count variable,
while it is simply assumed that data will be gathered through a random sampling of the parent
population and the sampling scheme is hardly discussed. This unfortunately, does not necessarily
hold in many empirical studies, and when the sampling scheme is itself biased, the obtained
estimate will also be biased regardless of how precise the mode! specification and estimation
algorithms are. It is of great importance, therefore, to pay close attention to the sampling scheme,

and to employ estimation procedures appropriate for the sampling method adopted.
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