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1. Introduction 

It is often assumed in theoreticaI studies that statisticaI inference is based on data chosen 

randomly合omthe entire population. This is not， however， a reaIistic assumption in many cases， 

and often we are forced to work with biased or incomplete data. In economics and other social 

sciences， where controlIed experiments are di出cult，this tendency is even more prominent. When 

data are obtained by a survey for example， individuaIs have the企eedomto choose whether or not 

to participate in the study， and this is Iikely to cause bias in the sample. In other cases， we choose 

to colIect data合oma sub-population， not the entire population， and this could aIso result in a 

biased sample. Two methods of colIecting data仕oma sub-population are the so-calIed conditional 

sampling and on-site sampling. 

Conditional sampling refers to the sampling scheme where data are observed under the 

condition their values exceed a certain number， most Iikely zero. An example is when a study is 
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conducted on the number of traffic violations， and data are coIIected合omthe list of those who 

have a previous record of traffic violations. By nature， this method excludes zero values in the 

sample. Another sampIing scheme often confused with conditional sampling is on-site sampling. 

When we want to study how the number of visits to the doctor depend on the patient's age， sex， 

etc.， we 0丘enchoose to take a sample合ompatients who are present at a hospital (on-site) on a 

particular date and at a particular time. A sample obtained in this fashion not only excIudes zero 

values but is also biased toward larger values. Nevertheless， this type of sampling is employed 

regularly since it is 0食eneasier to take samples仕omitems known to take positive values， 

especiaIIy when many zeros are expected in the data. In addition， if used properly， an on-site 

sample is likely to produce more accurate parameter estimates than a random sample based on the 

same sample size. The important point is not so much in trying to avoid biased sampling schemes 

but to acknowledge the type and magnitude of the bias so as to correctly assess its relation to the 

parent population. 

This paper provides information on the bias of the two sampIing methods described above， 

namely， conditional sampling and on-site sampling In addition， this study describes the 

characteristics of each method and discusses their relations to each other and to the distribution of 

the parent population. The two methods are often confused with one another in empirical studies， 

but the distributional features are distinct and ignoring their differences could result in a 

misleading conclusion. 

Discussion is limited to the sampling of discrete variables， since conditional sampling method 

is valid only for count data， and the emphasis is on cases where a count variable is dependent on 

quantitative explanatory variables， known as count data models. Note that in each of the two 

sampling schemes considered， the method itself involves random sampling， but the population 

合omwhich the sample is taken is not the entire population， but a biased sub-population， and hence 

results in a biased sample. 

In Section 2， conditional sampling and on-site sampling methods are reviewed for discrete 

variables in general. Both methods produce biased samples of the parent population， and among 

these two， on-site sampling method has larger bias as weII as larger variance. Section 3 deals with 

count data models and distributions of response variables under conditional and on-site sampling 

methods. Section 4 extends these models to cases where data are also truncated合omabove， and 

likelihood functions are then derived for both sampling methods. Section 5 concIudes this research. 

Throughout this paper， p(y) = P(Y = y) denotes the probabiIity of a discrete random variable Y 
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A note on conditional and on-site sampling 

in the parent population， unless otherwise noted. 

Truncated at zero models---biased sampling 2. 

Conditional sampling 2・1

When we want data on the number of times an individual participates in a particular activity 

or event， it is sometimes easier to take a sample仕omthe Iist of those who have participated in the 

activity (event) at least once. If this type of sampling is employed， individuals without any 

previous record ofparticipation have no possibility ofbeing sampled. In other words， the obtained 

data will be truncated at zero. This type of sampling will be referred to as conditional sampling. 

For example， when a Iist is generated合omthe E-mail addresses of people who visit a paritcular 

website and a sample is chosen randomly rrom that Iist， this would be conditional sampling. 

Under this sampling scheme， at least one occu汀enceof the event of interest，i.e.participation 

in a particular activity is the necessary condition to be included in the list， which will be called the 

conditional population， then， is a sub-population composed of A conditional population. 

individuals taking positive values only. The probability of the number of event occu汀encesfor 

individuals in the conditional population is the probability of the count variable conditioned to 

take positive values， and so is given by 

p(y) p(y) 
pc(y) = p(y I Y > 0) =一一一一一=一一一一

P(Y > 0) 1 -p(O) ， 
(2.1) 

denotes the p(y) = p(Y = y) stands for conditional population， and where the subscript C 

Y in the parent population. The expected value and probability function of the count variable 

(2.2) 

variance ofthe conditional population are derived as 

)>P(Y>k) 
E(Y) bll 

E(Yr) =一一一一一二
し P(Y> 0) P(Y > 0) 

(2.3) (Y r ) =ー」同 y2p(y) 主立主|
し P(Y>O)l::1/ r'" P(Y > 0) J 

and 

denotes the expected value of the count variable in the parent E(Y) respectively. Here， 

p(O) = P(Y > 0) > 0， the expected value of the conditional population exceeds population. When 

that of the parent population. In other words， this sampling procedure is biased. It can also be 

shown in a straightforward manner that V(Yc)く V(n，regardless ofthe distributional form of Y， 
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that the variance of the population of individuals conditioned to take positive values is smaIIer 

than that ofthe parent population. 

As an iIIustrative example， let us consider the case where the count variable foIIows a 

Poisson distribution. The Poisson model is the most basic model of discrete variablesヲ andis given 

by 

~λ 1Y 

p(y) =行ト (2.4) 

where λis the mean of the parent population. Probability of the corresponding count variable 

YC in the conditional population is given by 

eλλY eλλY 

L_ _ ̂' __ y! y! e-λλY 
pc(y) = p(yly > 0) =でーーァー=一一一γ=一一一_:1_ ' 

' t戸eλI ト e-A y!(l-e-A
) 

.---

合omwhich the expected value is obtained as 

λ λ 否、E(ヰ)=一-7=l+ての~B2k (一λ)2k
1-e-~ L. bi 

Variance is given by 

λλ2e 
V(Yc) =一一一一一一一一一ー

し 1-eλ 。-eザ

where B2k is a Bemoulli number. 

Distribution of the conditional population is clearIy under-dispersed， that is， the mean exceeds the 

variance. Note that mean and variance in the parent population are equaI (refe汀edto as equi-

dispersion) for the Poisson model. 

2・2 On-site sampIing 

When searching for oil， larger oil fields are more likely to be discovered than smalIer ones 

because of their sizes. This type of occurrence， weII acknowledged for cases with continuous 

variables， is known as Iength-biased or size-biased sampling. Since larger values are likely to be 

included in the data， the obtained sample is biased and an estimation should be carried out with 

this in mind. What is less known is the fact that similar circumstances exist when sampling 

discrete data. When we want data on the number of visits to a certain site and we choose an on-site 

sample， I.e. a sample chosen randomly仕omthe population of individuals present at the site of 

interest on a pre-selected date and time (the on-site population)， then individuals will have a 
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bigger chance of being selected if they are often at the sampling site. This point is overlooked in 

many empirical studies， and often， conditional distribution of the previous section is used to 

estimate when in fact it is more appropriate to use the on-site distribution as derived below. 

While on-site sampling method requires choosing items randomly on-site， it not only fails to 

pick up zero values but also produces positive bias in the sample. As already stated， this stems 

合omthe fact that on-site population is a sub-population composed of individuals on-site at the 

time of sampling. Individuals often at the site have a higher probability of being in the on-site 

population， and thus a higher probability of being selected in the sample. Probability of a count 

variable in an on-site population is related to that ofthe parent population by 

yp(y) y，'P(y) 
B(Y) =一一一=

(y) ι 
)~P(Y>k) 

(2.5) 

under the assumption that the probability ofbeing on-site is proportional to the value it takes. Note 

that it is more accurate， in this case， to assume that an item's probability of being on-site is 

proportional to the length of time spent at the sampling site. This， however， causes significant 

complexity in the model， whereas results obtained using such models are most likely， barely 

di仔erent合omthe simplified version employed here. The mean and variance of a count variable 

九 inan on-site population are related to that ofthe parent population by 

and 

(YB )=五とよ
E(Y) 

V (Y B )=判断)-臨界)

(2.6) 

(2.7) 

respectively. The expected value of九 exceedsthe mean of the parent population， since 

E(YB)一m ニ古ホ7井』い(げYド内2勺)一{似引印E(Y)η川)沿}2]九Var刷凶a釘剖aria吋巾耐i均a

and only if 

E(Y){E(y
3
)+ [E(Y)P}> E(y

2
){E(y

2
)+ [E(Y))2}. 

For Poisson distributed count variables， E(YB)=主土土.!Lλ+I and V(九)ニλ，so the 
λ 

distribution is also under-dispersed using this sampling scheme. 

2・3 Relation between conditional and on-site sampling 

Intuitively， it seems that bias of a count variable in an on-site population should be larger in 
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magnitude than bias in the conditionaI population， since on-site sampling has a tendency to select 

larger values. A formal proof is given below: 

Theorem For Y discrete， E(YB)::::': E(Yc) regardless ofthe form ofthe distribution. 

Proof. It is necessary and sufficient to show that 

五ζ1::::.:_I_立~ regardless of the form of the distribution. This is equivalent to showing 
E(Y) 1 -p(O) 

that 

E(y2){P(Y > O)}三{E(y)}2，which is a sharper version ofthe well known Ca田 hy-Schwartz

inequaIity. But， 

E(Y 2){p(y > O)}-{E(Y)}2 

=》2pゆ叶SF(イ
= .L， k

2
p(k)+ .L，(j2+e)p(j)p(k)ーヱk

2
p(k)ー2.L， }kp(j)p(k)

=エ(j-k)2p(j)p(k)
j<k 

> o. 

Similarly， it can be shown that variance of a count variable in an on-site population exceeds 

that ofthe conditional population. 

Lemma For Y discrete， V(YB)ミV(ん)regardless ofthe form ofthe distribution. 

Proof. It is necessary and sufficient to show that 

ホ (E(Y3)-hur)〉 P(yl〉 O)(21Y2p(Y)-rx))

which is equivalent to showing that 

十(Y> 0)}2(E(y3)E(Y) 主(y2)}2)>か(Y)}2P(Y > 0)三y2p(y)-(E(y):t

To prove the inequality of above， it is sufficient to show that 

炉(y)}4+ E(y3)E(Y){P(Y > 0)}2ー {P(Y> 0)}2{E(y2)}2一{P(Y>叫E(y
2
)XE(Y)Y>0.

Reaπanging terms， it can be shown， as with the case ofthe mean that 
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A note on conditional and on-site sampling 

信(Y)}4+ E(Y 3 )E(Y){P(Y > 0) y -{P(Y > 0)}2 {E(Y 2) Yーヤ(Y> 的}{E(Y2) }{E(Y)}2 

= [{E(川 4_ {P(Y > 0)Y{E(y2)}2]+ [E(y3)E(Y){P(Y > O)}-{P(Y > 0)}{E(y2)}{E(Y)f] 
> [E(y3)E(円{P(Y> O)}ー {P(Y> O)}主(y2)}{E(Y)f]
= L (k2 -j2)(k -j)p(j)p(k) 

j<k 

> O. 

To study the distributional differences of the two sampling schemes in more detail， recall that 

when the distribution of a count variable Y in the parent population is Poisson， the co汀'esponding

distribution of Yc in a conditional population is given by pc(Y)=」 74ιwhereas，
1-e 日 y!

〆 、 A ーλ1y-l 

distribution of九 inan on-site population is given by P B (Y ) = 7.ーιT・ForYC， probability 、 ノ リ リ .

Pc (k) for every k is simply the probability of the parent population multiplied by a constant 

I-eλ. The relative magnitudes of the probabilities， therefore， are identical to that of the parent 

population. On the other hand， the probability distribution of YB is displaced (shifted) entirely to 

the right. This distinction occurs since on-site sampling has a tendency to choose variables with 

larger values， regardless of the distributional form of Y . Ignoring these fundamental differences 

and confusing the two methods results in an incorrect assessment of the parent population. It can 

indeed be shown that for any discrete Y， probability of YB exceeds that of YC for values k 

E(Y) 
such that k>一一一一一

l-p(O) . 

3. Count data models 

3・1Multiplicative heterogeneity models 

In many cases， the objective of studying discrete data is to specify the dependence of a count 

variable on one or more quantitative or qualitative observable variables. A typical approach to this 

problem is to employ regression techniques. The most basic model of count regression is the 

simple Poisson model， where the response count variable Y follows a Poisson distribution 

P(Y = ylλ)=バylλ)ニ守ム
and the expected value λ= E(Y) is related to the m dimensional column vector of regressors 

X =(xlぃ ー，Xm)' by the relation logλ= x's. Note that s is a mxI parameter vector 

(戸l'…，s m)' to be estimated from the data. Then， E( Y) =λ= ex's ， so the specification of above 

ensures positivity ofthe expected value ofthe counts. 
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The Poisson model does not aIlow heterogeneity in the population and also imposes a 

restriction that the variable is equi-dispersed. Its use in practice， therefore， is limited. To aIlow 

heterogeneity， it is 0白enassumed that E(わ=ん =λ円 =exp(x;s)vj for every observation i， 

where vj is an unobservable random variable representing heterogeneity of item i. This type of 

model is caHed a multiplicative heterogeneity modeI. For identification purpose， V is 

standardized to have expected value one， i.e.， E(v) = 1 . Since v cannot be observed， we need to 

integrate this factor out to estimate the modeI. Letting g denote the density of v， the marginal 

probability of count variable Y with multiplicative heterogeneity given the values of explanatory 

variables， is derived as 

fe一λV(λv)Y
p(y I x)ニ|一一ーで-''-g(v)dv ， 

J y! 
(3. 1) 

a mixed Poisson distribution. 

Probability of YC in a conditional population， for this case， is given， using (2.1) and (3. I )，by 

reλν(λv)Y l一一ーで_0'-g(v)dv 
， ， p(Y) J y! 

P仁 (ylx)=一一一一=
し '00' P(Y>O) 1一ψ(λv)

(3.2) 

from which the expected value and variance are derived as 

E(Y) λE(v) λ 
E(Yr) =一一一一一=一一一一=一一一一一

し P(Y>O) 1一ψ(λv) 1一ψ(λv)
(3.3) 

and 

ル 2 町、 A?{E(v)F )_ 1 ( 12 Z;O/、 1 ..12 i 
V(九)=亡お可|λ E(v")+λE(v)一τぉ万1=τ蒜可lλ E(v)+λ一亡蒜可J' (3.4) 

respectively. Note here thatψdenotes the characteristic function of the heterogeneity factor v. 

This distribution is under-dispersed 
{E(V)}2 

if 1 ψ(λv)く一一τ一
E(vム)

or equivalently， if 

{1一ψ(λv)}E(v2
)く 1，and over-dispersed if {1一ψ(λv)}E(v2

)> 1. 

For on-site population， probability of YB is given， using (2.5) and (3.1)， by 

reーλV(λv)Y
J~\ I一一一一一-g(v)dv

" yp(ylx) J (yー I)!
PB(ylx) =一ーニー=
D"  1 ' E(Y) 

(3.5) 

合omwhich the expected value and variance are derived as 

E(YB)=I+λE(v2
) (3.6) 
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A note on conditional and on-site sampling 

and 

V(九)=λE(v2
)+λ2 E(v 3 )ーが主(v2)}2 

resp民 ti叫 Over-向 ersio…ursifand or削 fEv
3 

>主(V)2Y +会

(3.7) 

3・2A parametric example 

Depending on the parametric form of the density g， various heterogeneous count data 

models can be proposed. A popular method is to assume that heterogeneity factor v folIows a 

Gamma distribution r(，α，α) ， where the value of parameterαis to be estimated企omthe data. 

For specification pu中ose，the distribution is standardized to have expected value one. This 

assumption leads to a Negative Binomial distribution for the count variable Y， that is 

p(yl山 )=rLml)(市 T(出Y (3.8) 

Many empirical studies show that negative binomial model does indeed fit the data very weIl， 

and therefore may be considered as a preliminary candidate of a parametric count data model with 

multiplicative heterogeneity. Expected value and variance of Y for this model are given by λ 

and A， + A，2 • Using (3.3)， (3.4) and (3.8)， the mean and variance of YC in a conditional 
α 

population are derived as 

E(Y(o) = λ 一

1-(出了
and 

"α4  

respectivelμThe distribution is over-dispersed if and only if r ~. ~ ， 1 く~. Mean and 
¥a+AJ a+l 

variance of YB in an on-site population are given， using (3.6) and (3.7) by 

E(ら)=ιヤ旦=1十 λ+t

and 

V(Y
B 
)=λ(α+l)jα+λ) 

α 

「
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respectively. Over dispersion occurs when λ>~とて・
α+1 

4. Right truncated models 

When making observations on a discrete variable， data are often truncated仕omabove. A 

typica! case is when data are collected in surveys， and participants are asked to count the number 

of certain events， with the highest category in the questionnaire being “n or more". In this section， 

estimation methods of count data models with this type of censoring， where observations are 

truncated企omabove in a deterministic manner， are discussed. It is assumed that sampling is done 

either from a conditional or an on-site population. In other words， the observed data are censored 

both仕omthe right above and the left below. 

4-1 Likelihood function with right truncation 

Suppose data are truncated at value k， where k is a positive integer. Probability of a count 

variable Y with deterministic right censoring is given by 

I p(y) if yく k

PR(y) = i P(Y以)= L，p(j) グ y=k， (4.1) 

I 0 if y>k 

where the subscript R denotes right truncation. Using this， the expected value of a count variable 

YCR in a conditional population with right truncation is obtained as 

RLR)=Zポ暗殺伝
which， after some calculation， yields 

k-l 

E(YrR)=k+ー」一一)，(y -k ) p(y) . 
山トP(O)台

(4.2) 

Expected value of a count variable YBR in an on-site distribution with right truncation， on the 

other hand， is given by 

山)=k +吉74l(yz-か)p( (4.3) 

In general， likelihood function of a count variable with right truncation takes the form 
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A notc on conditional and on-sitc sampling 

L= fI p(Yi) fI p(Y~k) 

from which the log-likelihood function is derived as 

logL=エlogp(Yi)+エlogP(Y ~ k)・ (4.4)

In particular， the log-likelihood of a conditional sample with right truncation takes the form 

l同o句gL，ん'CR= 土訂I(οlト-イ叫diω削榊'i)川ル)川尚10同O勾gp〆仇ωy九i)+吋吋diω仙'i1刈10叫0
i=11 l j=k J I 
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Likewise， the log-likelihood of an on-site sample with right truncation is given by 

log LBR = I.I (1-di)logYiP(Yi) + di logl I.jp(j) l-log{E(Y)}1 ' 
I l j=k J I 

where again， d
i 
is defined as above and E(Y) denotes the expected value of the count variable 

(4.6) 

Y in the parent population. 

4・2 A parametric example 

The log-likelihood of a Poisson count data model with right truncation， based on n 

observations合oma cond江ionalsample (xi， yJ i = 1，…，n is given by 

l叶針。のlog守è+d，IO{~引-'Og~-dl

which， after some calculation， yields 

l叶 n~+叫

As before，λ= ex's . Since the estimates cannot be obtained in a closed form， estimation needs to 

be carried out using numerical methods， for example， the algorithm developed by Bemdt， Hall， 

Hall， and Hausman (1974). The log-likelihood function of an on-site sample with right truncation 

is obtained in a similar fashion， and is given by 

可

i
A
斗ゐ



叶 ー叶

As a more sophisticated example， consider the negative binomial model defined in section 3， 

that is， 

ルλα) ニ r芯♂1)(古r(Å~ar， 

allowing for multiplicative heterogeneity. Log-likelihood of this model based on a conditional 

sample with right truncation is given by 

h仙 =吾到卦卦十喜到掛掛ψ[<トト(ο十lト一

h叩g

For on-site sample with right truncation， the co汀espondinglog-likelihood is derived， after some 

calculation， as 

h均仙gLら知β即R- ω 叩

言宇十←判(1←門刊1ト吋叩一吋吋4ω){IO以叫相叫訪}+t，d; 10唱O
Here again， the estimates cannot be obtained in closed form， and numerical methods need to be 

employed in order to obtain approximate solutions. 

5. Concluding remarks 

Conditional sampling and on-site sampling are two convenient ways of gathering data on 

discrete variables. When employing these sampling methods， however， one must be careful which 

method he or she is using， to correctly assess the type and magnitude of the bias involved. Failure 

to acknowledge the distributional feature of each sampling scheme results in a misleading 

conc1usion. It must also be emphasized that since the two methods fail to give information on zero 

values， these methods do not provide any means to test whether or not zero values are generated 

合omthe same distribution. 

In many cases， it is indeed natural to assume a fundamental difference between a zero and a 
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non-zero factor. A typical model that accommodates this type of departure is the hurdle modeI. 

This model assumes that 

I p， (0) if y = 0 

p(y)ニ↑(1-p， (0))ム iLr川
1'- r I ，-" 1 -P2 (0) 

where p， and P2 denote possibly distinct probability functions. It coIIapses to the regular model 

when p， (y) = P2 (y) for every y. Using conditional or on-site sampling method， an estimate 

for P2 is obtainable using the arguments in this pap侃 Anothersource of information is necessary， 

however， to estimate p， and/or to test whether p， (y) = P2 (y) for every y . 

Often， elaborate models are employed to describe the distributional form of a count variable， 

while it is simply assumed that data wiIl be gathered through a random sampling of the parent 

population and the sampIing scheme is hardly discussed. This unfortunately， does not necessarily 

hold in many empirical studies， and when the sampling scheme is itself biased， the obtained 

estimate will also be biased regardless of how precise the model specification and estimation 

algorithms are. lt is of great importance， therefore， to pay close attention to the sampling scheme， 

and to employ estimation procedures appropriate for the sampling method adopted. 
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