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Abstract

The discriminant method of two-value regression and three-layer artificial neu-
ral network (ANN) modeling with back—propagation have been applied to develop
quantitative structure-toxicity relationships. The training set contains 323 diverse
chemicals and their carcinogenicity data were obtained from the US National Tox-
icity Program. The data provide yes/no response (carcinogens or non—carcinogens)
as the endpoints. Two sets of molecular descriptors, DRAGON and BCI Finger-
prints, were explored for discriminating potential. To solve the problems in train-
ing the ANNs, various conditions of the network such as the training cycles and
neuron numbers of the intermediate layer were optimized. The optimum ANN
model with 25 kinds of DRAGON descriptors gave best prediction performance for
the test set of 185 compounds not included in the training set. The model showed
the prediction accuracy of 64.8% for test set chemicals.

Key words: carcinogenicity, molecular descriptors, neural network, quantitative
structure-activity relationships

1. Introduction

Numerous chemicals of natural and synthetic origin have been produced. There
are more than 80,000 chemicals registered for use in commerce in Japan, and an
estimated 2,000 new ones are supplied annually for our use such as foods, personal
care products, various drugs, house—hold cleaners, and agricultural chemicals.
However, the adverse effects of most of those chemicals on human health and eco-
systems are not known.

For carcinogenicity only limited data are available and rodent bioassays are very
laborious, time-consuming (3-5 years), and costly (>1 million U.S. dollars per
chemical). According to guidelines of the Food and Drug Administration (FDA),
carcinogenicity is required against multiple biological models. Thousands of chemi-
cals currently in commerce and in the environment have not undergone carcinogen-
icity testing. Therefore, a reliable tool for predicting carcinogenicity would be
highly desirable for virtual screening of compound libraries of both pharmaceuti-
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cally and other commercially interesting molecules.

The quantitative structure-activity relationship (QSAR) approaches based on the
assumption that the structure of a molecule should contain the features responsible
for its physical, chemical, and biological properties have been applied to the predic-
tion of toxicity (Dunn & Wold, 1981; Klopman et al., 2004). QSARs can be em-
ployed for estimating the activity of other chemicals not tested experimentally.
The Predictive Toxicology Challenge (PTC) 2000-2001 workshop was held in three
yeas ago (Helma et al 2001). Its aim was to obtain models for predicting the out-
come of biological tests for the carcinogenicity of chemicals using information on
chemical structure. The learning data contained rodent carcinogenicity for 417
compounds from the National Toxicology Program (NTP) database (which has a
preponderance of industrial chemicals with relatively simple chemical structures),
and test data contained of 185 compounds independently tested by FDA database
(which has a preponderance of pharmaceuticals with multiple ring systems). On
the basis of 7 sets of available descriptors (total: >7,000), 14 research teams sub-
mitted about 30 models. However, the exercise showed that models performed
poorly in predicting the results from the FDA database. One of the reasons might
come from the fact that most models used linear relationships between chemical
structure and carcinogenicity, which apply well within congeneric chemical classes.

In this study, both multiple linear regression (two-value regression) and artifi-
cial neural network (ANN) modeling were applied to make the prediction scheme
for chemical carcinogenicity. The prediction performance was evaluated through
simulated external validation employing complementary subsets. ANN simulates
the functioning of human neurons and can be used to model complex phenomena
where noise and nonlinear processes may be present, such as in this problem. The
ANN modeling has been used in limited cases of the modeling of toxicity of chemi-
cals. Villemin et al. (1994) used ANN to model polycyclic aromatic hydrocarbons
in carcinogenic classes, obtaining good results. A modeling of aromatic nitrogen
compounds in carcinogenic activity by ANN gave fairly good results (Gini et al,
1999). Their regression analysis to develop models proved to be unsuccessful. In a
study using 280 compounds of various kinds (Benigni & Richard, 1996), it was con-
cluded that BPNN models fitted training sets but had no general applicability.

2. Materials and Methods

2.1. Data set

The female rat data were the PTC data set containing 323 compounds by the
National Toxicology Program (NTP) and test data containing 185 compounds,
downloaded from the public domain (Helma et al., 2001), with the carcinogenicity
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of each labeled “+” for positive or “—” for negative. Although the NTP and FDA
used different rodent strains, the combined data set contain chemical carcinogen-
icities from experimental measurements on a single 2-year carcinogenicity study to
identify trans—species tumorigens.

2.2. Molecular descriptors

Cancer is not a single disease and several mechanisms are involved in the various
processes leading to the different tumors. From the mechanistic point of view,
there are basically two types of carcinogens: genotoxic and epigenetic/nongeno-
toxic. Genotoxic carcinogens (DNA-reactive carcinogens) are chemicals that directly
interact with DNA as either parent chemicals or reactive metabolites. Epigenetic
carcinogens are agents that act through a secondary mechanism that does not in-
volve direct DNA damage. In reality, the demarcation is seldom absolute. Evidence
suggests that some carcinogens act via genotoxic mechanisms in one set of targets
but via nongenotoxic mechanisms in another set of targets.

From a variety of available molecular descriptors, two sets of descriptors,
DRAGON and BCI fingerprints (Helma et al., 2001), were employed here. The first
set of descriptors is a system for calculating molecular descriptors for 3D-QSARs
developed by the Milano Chemometrics and QSAR Research Group (Todeschini &
Consonni, 2000) and 839 kinds of descriptors were prepared.

The other set of descriptors is keyed; that is, a dictionary gives the relationship
between substructures and bits. The fingerprint of a molecule is a string of bits
that shows whether certain molecular fragments are present in a molecule. Total
of 57240 BCI fingerprints were prepared and used for modeling.

2.3. Classification modeling

For categorical modeling the carcinogenicity, the following statistical methods
can be applied: linear discriminant analysis as implemented in STATISTICA and
binary logistic regression as available in SPSS (Mazzatorta et al., 2004). By pre-
ference, the discriminant method of two-value regression analysis was employed in
this study because of several advantages over linear discriminant analysis (Hatch
& Magee, 1998).

2.4. The artificial neural network (ANN) modeling

The artificial neural networks (ANNs) have an inherent ability to provide non-
linear and cross product terms for QSAR modeling. The ANNs may be especially
useful when a rigid theoretical basis and/or mathematical relationship to describe
a phenomenon to be modeled is not available in advance.

From many ANN approaches, both different in architecture and in learning algo-
rithms, the three-layer ANNs with the back-propagation of errors were employed
in this study. Since the theory and practical application of the ANN are popular,
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an explanation of the methodology can be delegated to the literature (Zupan &
Gasteiger, 1999). The most commonly used logsigmoid transfer function and the
delta rule for the error correction formula were used in the networks. The ANN

calculations were carried out by our in—house program.
3. Results and Discussion

3.1. Significant molecular descriptors

The statistical analysis to find the significant descriptors was carried out using
a heuristic method based on the linear regression technique for the training set of
323 compounds. This procedure is based on the scale forward selection technique
(Draper & Smith, 1966). The analyses revealed that 25 DRAGON-descriptors
(Table 1) were proved to be the significant model parameters for the best two-—

value regression model obtained:

CLASS=3.456—0.012Sp—0.265Ms—0.084nOH—0.122nNH+0.046 x ,+0.260CIC
+0.172SRW01+0.001SRW08—1.194BENel + 151.3JGI10—0.158MATSTe
—0.166MATS8p+0.106GATS2e —0.288Mor32m —0.361Mor16v+0.068Mor03e
+0.325Mor12e+0.558Morl1p+0.086Mor13p+0.857Mor19p—0.608E3u
—0.332G3p+0.638HATS7u—1.191H5p—0.8056R 2v (1)

In the above equation, the carcinogens are coded Class 1 and non—carcinogens are
coded Class 0. As can be seen from the definition of the descriptors in Table 1,
most of the descriptors are electrostatic, topological or geometrical (3D-structural)
in nature.

The alternative regression model with 25 BCI fingerprints gave slightly inferior
fit on the given set of chemicals. Therefore, the DRAGON descriptors were imple-
mented as the inputs for a neural network.

3.2. ANN model

The architecture of the neural network model used in this study is shown in Fig.
1. The network consists of three layers: 25 input nodes plus a bias, a varying
number of hidden-layer neurons (between two to ten plus one bias), and a single
output neuron corresponding to a compound’s carcinogenicity (“1” for carcinogens
and “0” for non—carcinogens). The statistical quality of the ANN and two-value
regression modeling results for training and test sets were evaluated based on the

following parameter:

Correct classification rate (%)
=correctly classified compounds/total number of test compounds (2)
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Table 1 List of 25 kinds of DRAGON molecular descriptors used for the modeling
of carcinogenicity.
Symbol Descriptor

Sp sum of atomic polarizabilities (scaled on carbon atom)

Ms mean electotopological state

nOH number of OH groups

nNH number of NH groups

Xo connectivity index chi-0 topological descriptor

CIC complementary information content (neighborhood symmetry)

SRWO01 self-returning walk count of order 01 molecular walk counts

SRW08 self-returning walk count of order 08 molecular walk counts

BENel negative Burden engenvalue weighted by atomic Sanderson electronegativities
BCUT descriptors

JGI10 mean topological charge idex of order 10 Galvez topological charge indices

MATSTe Moran autocorrelation weighted by atomic Sanderson electronegativities 2D
autocorrelations

MATS8p  Moran autocorrelation weighted by atomic polarizabilities 2D autocorrelations

GATS2e Geary autocorrelation weighted by atomic Sanderson electronegativities 2D
autocorrelations

Mor32m 3D-MoRSE weighted by atomic masses

Morl6v 3D-MoRSE weighted by atomic van der Waals volume

Mor03e 3D-MoRSE weighted by atomic Sanderson electronegativities

Morl2e 3D-MoRSE weighted by atomic Sanderson electronegativities

Morllp 3D-MoRSE weighted by atomic polarizabilities

Morl3p 3D-MoRSE weighted by atomic polarizabilities

Morl9p 3D-MoRSE weighted by atomic polarizabilities

E3u 3™ component accessibility directional WHIM index

G3p 3" component symmetry directional WHIM index weighted by atomic
polarizabilities

HATSTu leverage-weighted autocorrelation unweighted GETAWAY descriptor

Hbp H autocorrelation weighted by atomic polarizabilities GETAWAY descriptor

R2v R autocorrelation weighted by atomic van der Waals volumes GETAWAY

descriptors

The best architecture was determined to be (256+1) : (3+1) : 1 (25 input neurons
for the 25 descriptors plus a bias, three hidden-layer neurons plus a bias, and one

output layer neuron for a total of 82 adjustable parameters) using training data

sets. Maximum correct classification rate value was achieved when the network
was trained for 30000 epochs. The number of training data points (=323) is about
4 times greater than the number of adjustable parameters. The quality of fitting,
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Input layer Hidden layer Output layer

25 DRAGON descriptors

Bias

Fig.1 Architecture of neural network model for chemical
carcinogenicity modeling.

the value of correct classification rate of 91.0% with the ANN model, was found to
be better than that obtained with the two-value regression model of 81.4%.

The prediction results obtained by the ANN are shown in Table 2 together with
the experimental carcinogenicity and those results calculated by previous regression
model. The quality of the prediction, the correct classification rate of 64.8% with
the ANN model, was found to be better than that obtained with the two-value
regression model of 62.2%. An alternative ANN model using 25 kinds of BCI
fingerprints gave the correct classification rate of 55.1%.

Within the same structural class, QSAR analysis can be further optimized by
classifying the data into more well-defined subclasses. This is because structurally
closely related chemicals are expected to behave similarly in the mechanism of

action.
4. Conclusions

The present study examined the feasibility of an ANN for predicting carcinogen-
icity of chemicals of various types. Further developments will be needed to increase
the prediction power of the ANN model for practical assessing the chemical
carcinogenicity. We will have to add separate models for individual classes of com-
pounds to our system, since cancer is not a single disease and various mechanisms
are involved in a variety of processes. The results of this study showed the poten-
tial of applying the neural computing technique for predicting toxicity of chemi-

cals.
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Table 2 Prediction of carcinogenicity of test compounds by MLR and ANN models.

carcinogenicity*
no. compound CAS RN
obsd MLR ANN
1 acebutolol 37517-30-9 0 0 0
2 acrivastine 87848-99-5 0 0 0
3 acyclovir 99277-89-3 0 0 0
4 allopurinol 315-30-0 0 0 0
5 amiloride 2609-46-3 0 0 0
6 amlodipine 88150-42-9 0 1 1
3 amphetamine 300-62-9 0 0 0
8 ampicillin 69-534 0 1 0
9 amrinone 60719-84-8 0 0 0
10 astemizol 68844-T77-9 0 1 |
11 atenolol 29122-68-7 1 0 0
12 auranofin 34031-32-8 i 0 0
13 benazepril 86541-75-5 0 0 0
14 bepridil 64706-54-3 1 0 0
15 betaxolol 63659-18-7 0 0 0
16 bisoprolol 66722-44-9 0 0 0
17 bitolterol 30392-40-6 0 1 1
18 brotizolam 57801-81-7 1 0 0
19 budesonide 51333-22-3 1 0 0
20 bunolol 27591-01-1 1 0 0
21 bupropion 31677-93-7 0 0 0
22 buspirone 36505-84-T 0 0 0
23 captopril 62571-86-2 0 0 0
24 carteolol 51781-06-7 0 0 0
25 cetirizine 83881-51-0 0 0 0
26 chlordiazepoxide 58-25-3 0 0 0
21 chlorpheniramine 132-22-9 0 0 0
28 chlorpromazine 90-53-3 1 0 0
29 189 1 1 0
30 ciprofloxacin 85721-33-1 0 0 0
31 cisapride 81098-60-4 0 1 1
32 clemastine 15686-51-8 0 0 0
33 clozapine 5786-21-0 0 0 0
34 cyclobenzaprine 303-53-7 0 0 0
35 dacarbazine 4342-03-2 1 0 0
36 dantrolene 7261-97-4 0 0 0
37 desogen 54024-22-5 1 0 0
38 dexfenfluramine 3239-44-9 0 0 0
39 diazepam 439-14-5 0 0 0
40 diclofenac 15307-86-5 0 1 0
41 didanosine 69655-05-6 0 0 0
42 diflunisal 22494-42-4 0 1 0
43 diltiazem 42399-41-7 0 1 0
44 diphenhydramine 58-73-1 0 0 0
45 dipyridamole 58-32-2 0 1 1
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Table 2 (Continued)

carcinogenicity*
no. compound CAS RN
obsd MLR ANN

46 doxazosin 74191-85-8 0 1 1
47 doxylamine 469-21-6 1 0 0
48 enalapril 75847-73-3 0 0 0
49 ephedrine 299-42-3 0 0 0
50 erythromycin 114-07-8 0 1 1
o1 estazolam 29975-16-4 0 0 0
52 etodolac 41340-25-4 0 0 0
53 etretinate 54350-48-0 0 0 0
54 fameciclovir 104227-87-4 0 0 0
55 famotidine 76824-35-6 0 0 0
56 felbamnate 25451-15—4 1 0 0
57 finasteride 98319-26-T7 1 0 0
o8 flecainide 54143-55—4 0 1 1
59 fluconazole 86386—-73—4 1 0 0
60 flunisolide 77326-96-6 0 0 0
61 fluoxetine 54910-89-3 0 | 1
62 flurazepam 17617-23-1 0 1 0
63 flurbiprofen 5104-49-4 0 0 0
64 fluvastatin 93957-54-1 1 1 1
65 foscarnet 63585-09-1 0 0 0
66 fosinopril 98048-97-6 1 0 0
67 furazolidone 67-45-8 0 0 0
68 gabapentin 60142-96-3 1 0 0
69 gemfibrozil 25812-30-0 1 0 0
70 glipizide 29094-61-9 0 0 0
fia) glyburide 10238-21-8 0 0 0
72 granisetron 109889-09-0 1 0 0
73 guanadrel 40580-59-4 1 0 0
T4 guanfacine 29110-47-2 0 0 0
75 hydralazine 86-54-4 1 0 1
76 indapamide 26807-65-8 0 1 0
Tl indomethacine 53-86-1 0 0 0
78 iodinated glycerol 5634-39-9 1 0 0
79 ipratropium ‘ 66985-17-9 0 0 0
80 isosorbide 652-67-5 0 0 0
81 isradipine 75695-93-1 1 1 0
82 itraconazole 84625-61-6 1 0 0
83 ketoconazole 65277-42-1 0 0 0
84 ketoprofen 22071-15-4 0 0 0
85 ketorolac 74103-06-3 0 0 0
86 labetalol 36894-69-6 0 0 0
87 lamotrigine 84057-84~1 0 0 0
88 lansoprazole 103577-45-3 1 0 0
89 levamisole 14769-73-4 0 0 0
90 levomethadone 125-58-6 0 0 0
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Table 2 (Continued)
carcinogenicity*
no. compound CAS RN
obsd MLR ANN

91 loratidine 79794-75-5 0 0 0
92 lorazepam 846-49-1 0 0 0
93 lovastatin 75330-75-5 1 1 0
94 mannitol 87-78-5 0 0 0
95 mebendazole 31431-39-7 0 0 0
96 mefloquine 53230-10-7 0 0 0
97 menthol 89-78-1 0 0 0
98 metaproterenol 586-06-1 0 0 0
99 alpha-methyldopa 555-30-6 0 0 0
100 methylphenidate 113-45-1 0 0 0
101 metolazone 17560-51-9 0 0 0
102 metoprolol 37350-58-6 0 1 1
103 metronidazole 443-48-1 1 0 0
104  mexiletine 5370-01-4 0 1 0
105 midazolam 59467-70-8 1} 0 0
106 milrinone 78415-72-2 0 0 0
107  minocycline 10118-90-8 1 0 0
108  misoprostol 09122-46-2 0 0 0
109 moricizine 31883-05-3 1 0 0
110 mycophenolate 24280-93-1 0 1 1
111 nabumetone 42924-53-8 0 1 I
112 nadolol 42200-33-9 0 0 0
113 nafenopin 7195 1 0 0
114 nedocromil 69049-73-6 0 0 0
115 nefazodone 83366-66-9 0 0 0
116  netilmicin 56391-56-1 0 0 0
117 nicardipine 55985-32-5 1 1 0
118 nimodipine 66085-59-4 1 1 1
119  nisoldipine 63675-72-9 0 1 1
120 nizatidine 76963-41-2 0 0 0
121 omeprazole 73590-58-6 1 0 0
122 ondansetron 116002-70-1 0 1 0
123 olsalazine 15722-48-2 0 1 1
124 oxaprozin 21256-18-8 0 0 0
125  oxytetracycline 6153-64-6 0 0 0
126 pamidronic acid 40391-99-9 1 0 0
127 paroxetine 61869-08-7 0 1 0
128 penbutolol 38363-40-5 0 1 1
129 penicillin 69-57-8 0 1 1
130 pentaerythritol 115-77-5 0 0 1
131 pentoxifylline 6493-05-6 0 0 0
132 pergolide 66104-22-1 0 0 0
183 perindopril 82834-16-0 0 0 0
134 permethrin 52645-53-1 0 1 1
135 phenazopyridine 94-78-0 1 1 1
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Table 2 (Continued)
carcinogenicity*
no. compound CAS RN
obsd MLR ANN

136 phenformin 114-86-3 0 0 0
137  phenylephrine 89-42-T 0 0 0
138 pimozide 2062-78-4 0 0 0
139 pindolol 13523-86-9 0 0 0
140  pirbuterol 38677-81-5 0 0 0
141 piroxicam 36322-90-4 0 0 0
142 pravastatin 81093-37-0 1 0 0
143 prazepam 2955-38-6 0 0 0
144 procarbazine 671-16-9 1 0 0
145  promethazine 60-87-7 0 0 0
146 propafenone 54063-53-5 0 0 0
147 propranolol 318-98-9 0 0 0
148  pyrilamine 91-84-9 0 1 1
149  quinapril 85441-61-8 0 0 0
150  ramipril 87333-19-5 0 0 0
151  ranitidine 66357-35-5 0 0 0
152 ribavirin 36791-04-5 1 0 0
153 rifabutin 72559-06-9 0 1 0
154 rifampin 13292-46-1 0 1 1
155  ripazepam 26308-28-1 0 0 0
156  risperidone 106266-06-2 1 0 0
157  scopolamine 138-12-5 0 0 0
158 selenium sulfide 7446-34-6 1 0 0
159 sertraline 79617-96-2 1 0 0
160 simvastatin 79902-63-9 1 1 0
161 sodium fluoride 7681-49-4 0 0 0
162  sotalol 3930-20-9 0 0 0
163 sulfadiazine 68-35-9 0 0 0
164  sumatriptan 103628-46-2 0 0 0
165  tamoxifen 10540-29-1 1 1 1
166 temazepam 846-50-4 0 0 0
167  terazosin 63590-64-T7 1 1 1
168 terbinafine 78628-80-5 1 1 1
169 terbutaline 23031-25-6 0 0 0
170 terfenadine 50679-08-8 0 0 0
171 tetracycline 60-54-8 0 0 0
172 thiabendazole 148-79-8 1 0 0
173 ticlopidine 55142-85-3 0 0 0
174 timolol 26839-75-8 1 0 0
175 tocainide 09-26—T 0 0 1
176 tolmetin 152-11-4 0 0 0
177 torsemide 56211-40-6 1 0 0
178  tramadol 27203-92-5 0 0 0
179 triprolidine 486-12-4 0 0 0
180 tryptophan 54-12-6 0 0 0
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Table 2 (Continued)

carcinogenicity*

no. compound CAS RN

obsd MLR ANN
181 ursodeoxycholic acid 128-13-2 1 0 0
182 valaciclovir 124832-26-4 0 1 0
183 valproic acid 99-66-1 1 0 0
184 venlafaxine 93413-69-5 0 0 0
185 zolpidem 82626-48-0 ) 0 0
correct classification rate 62.2 64.8

*: “1” refers to carcinogenic positive; “0” is negative.
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