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Implementation of the fair pricing

correspondence

Yusuke Samejima

Abstract

This paper proposes an extensive game form that fully implements the fair pricing correspondence in
the NIMBY problems. The NIMBY problems, namely the not in my back yard problems, consider the
problems of deciding a location for a waste disposal facility among districts. For the NIMBY problems,
Sakai [2010] has characterized the fair pricing rules with a set of interesting axioms. As for the imple-
mentation of the rules, Sakai [2010] has pointed out that the rules are not Nash implementable since
they violate Maskin monotonicity (Maskin [1999]). This paper considers the fair pricing correspon-
dence, which associates with a NIMBY problem the set of fair pricing rule allocations. Although the
fair pricing correspondence is not Nash implementable either, it is implementable in subgame-perfect

equilibrium with our two-stage game form.

1. Introduction

This paper proposes a game form that implements the fair pricing correspondence in the NIMBY
problems. NIMBY, an acronym of not in my back yard, is often used to describe opposition
by residents to locally unwanted public facilities. Examples of the facilities that may cause
NIMBY reactions include airports, landfill dump sites, military bases, power plants, prisons,
and others. These facilities are necessary public goods for the society. However, for accepters
of the facilities, they might be local ‘bads’ that cause disutilities. Therefore, how to choose a
site for a NIMBY facility and how to compensate the accepter of the facility are non-trivial
problems.

This paper considers a typical NIMBY problem of deciding a location for a waste disposal
facility among districts. For this NIMBY problem, Sakai [2010] has proposed the fair pricing

rules that possess several desirable properties. The rule chooses an efficient district, whose sum



of the disutility and the construction cost of the facility is the smallest among all districts. In
the rule, compensation for the accepter of the facility is determined so that each district must
make monetary payments in order to share the accepter’s disutility and the construction cost
in a fair manner, in the sense that each district bears a burden in proportion to the amount of
wastes that it produces. Furthermore, the fair pricing rules satisfy axioms such as core property,
monotonicity, and reallocation-proofness as Sakai [2010] shows. Sakai also proves that the set
of fair pricing rules is characterized by individual rationality, monotonicity, and reallocation-
proofness when there are three or more districts in the society. These characterizations of the
fair pricing rules indicate the validity and significance of the rules.

When the society, or the social planner, is about to exercise a fair pricing rule, he must
collect information on the amount of wastes, the construction cost, and the disutility for each
district. Sakai [2010] mentions that the information on the first two items can be collected,
but the one on the last item is hard to obtain. So, while the information on the wastes and
the costs can be known to the social planner, the information on the disutilities is unknown to
him. Pérez-Castrillo and Wettstein [2002] points out that it is often the case that the parties
concerned possess much more information than the social planner. For such circumstances, a
game form can be used as a tool for the social planner who wishes to implement the rules. The
game form itself can be defined independently of the disutilities of the districts in the society.
As the literature on implementation theory has proposed, properly designed game forms can
realize desirable allocations in equilibrium of the games even if the social planner is given an
insufficient amount of information.

As for the implementation of the fair pricing rules, Sakai [2010] has pointed out that
the rules are not implementable in Nash equilibrium since they violate Maskin monotonicity
(Maskin [1999]), which is a necessary condition for Nash implementation. The present paper
considers the fair pricing correspondence, which associates with a NIMBY problem the set of
fair pricing rule allocations. Unfortunately, the fair pricing correspondence is not Nash imple-
mentable, either. However, the fair pricing correspondence is implementable in subgame-perfect
equilibrium with an extensive game form that we propose in the present paper.

Our two-stage game form is relatively simple: In the game form, each district reports just a
price, and ‘yes’ or ‘no’. In Stage 1, each district is asked to report a price: The lowest price will
be the unit price that each district must pay when it brings one unit of wastes to the facility. In

Stage 2, each district is asked whether it wants to accept the facility. If any district says ‘yes’,
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the accepter is chosen from those who have reported ‘yes’. If all districts say ‘no’, the accepter
is chosen from those who have reported the lowest price in Stage 1. The accepter will bear
the construction cost of the facility but it will receive payments from the other districts. Each
payment is calculated as a product of the unit price determined in Stage 1 and the amount of
wastes that each district produces.

With this game form, every fair pricing rule allocation can be realized as an equilibrium
allocation. Moreover, every equilibrium allocation is in fact a fair pricing rule allocation. So,
our game form fully implements the fair pricing correspondence.

Besides Sakai [2010], several papers are closely related to our research. Ehlers [2009] as
well as Pérez-Castrillo and Wettstein [2002] considers a model that can be used for choosing
a location of a NIMBY facility. These papers propose multi-bidding game forms and analyze
Nash equilibrium allocations. The model of these papers is different from Sakai’s in that the
latter model puts more structures in the model, such as cost functions and disutility functions
that are increasing in the amount of wastes. Minehart and Neeman [2002] consider a model
that is closer to Sakai’s, but the difference is in that the latter model explicitly distinguishes
costs from disutilities. In addition, Minehart and Neeman propose a bidding game form that
resembles the second-price auction, and its equilibrium allocations are different from fair pricing
rule allocations. In the present paper, we follow the model introduced by Sakai [2010], so our
settings are different from the above papers’. Our contribution to the literature is to propose a
game form that exactly achieves the fair pricing rule allocations in subgame-perfect equilibria.

The remaining part of this paper is organized as follows. Section 2 defines the NIMBY
problems and introduces the notions of the fair pricing correspondence and implementation.
Section 3 proposes a game form and proves the result. Section 4 provides some concluding
remarks. The appendix proves that the fair pricing correspondence is not implementable in

Nash equilibrium.

2. The model

The model follows Sakai [2010]. The set of districts is denoted by N = {1,2,...,n} where
n > 2. Each district i € N produces an amount w; > 0 of wastes. Let w = (w;);en be a profile
of waste parameters. The total amount of wastes is denoted by W = 37,y w;. We assume
that W > 0. Let W = {w € RY: W > 0} be the set of profiles of waste parameters.

The wastes should be disposed at a facility, which is to be constructed at some district. The



construction cost of the facility with a capacity W at district ¢ is given by ¢;(W) > 0. The
cost function ¢;: Ry — Ry is assumed to be weakly concave, strictly increasing, and satisfying
¢i(0) = 0. The set of cost functions is denoted by C. Let ¢ = (¢;)ien be a profile of cost
functions. The set of profiles of cost functions is denoted by C¥

When an amount W of wastes is disposed at district i’s facility, it bears a disutility
vi(W) > 0. The disutility function v;: Ry — R, is assumed to be weakly concave, strictly
increasing, and satisfying v;(0) = 0. The set of disutility functions is denoted by V. The signif-
icance of distinguishing ¢; from v; is discussed in Sakai [2010]. Let v = (v;);en be a profile of
disutility functions. The set of profiles of disutility functions is denoted by VN

If district i’s facility deals with an amount W of wastes and i receives a net monetary

transfer m; € R, then 7 obtains a utility
u;(W,m;) = —v;(W) +m,.

Let m = (m;);en be a profile of net monetary transfers.

A NIMBY problem is a list
(w,v,¢) eD=W x VN x V.

An assignment function, o: N — {0,1} satisfying |[c~!(1)| = 1, specifies whether or not
a facility is assigned to a given district. If o(j) = 1, then it means that a facility is to be
constructed at district j and all the other districts will not have any facilities: District j is called
the accepter. The other districts are called non-accepters. The set of assignment functions is
denoted by A.

An allocation z for (w,c) € W x CVN is a list
z=(W,o,m) € {W} x AxRY

satisfying the budget balance condition ¢;(W) = — 3.y m; where j = o~1(1). The budget
balance condition says that when a facility is constructed at district j, the exact amount of the

construction cost, ¢;(W), is covered by the sum of net monetary payments from each district,
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— > ,en mi. For an allocation z, let x; denote district i’s bundle
z; = (o) - W,m;) € Ry xR,

For example, if district j is the accepter, then z; = (W, m;) and x; = (0,m;) for each i # j.
The set of allocations for (w,c) € W x CV is denoted by X (w,c).
The fair price for (w,v,c) € D is defined by

p(w,v,c) = minen (i (Mw;) + Cz(W))

A fair pricing rule 1 is a single-valued function that associates with each (w,v,¢) € D an

allocation ¥ (w,v,c) = (W,o,m) € X(w,c) such that

j € arg Iilélgll('vi(v‘/) + (W),
o(j) =1 and o(i) = 0 for each i # j,
m; = —p(w,v.c) - w; +o(i) - v;(W) for each i € N.

Let v;(w,v,c) = (o(i) - W,m;) denote district i’s bundle for ¢)(w, v, c). The rule says that the
accepter should be district j who is efficient in the sense that district j minimizes the sum of
the disutility and the construction cost for the amount W of wastes.! The rule also says that
each district must make monetary payments in order to share j’s disutility and the construction
cost in a fair manner in the following sense: For ¥(w, v, ¢), each district i € N obtains a utility

1 (0 (W) + ¢, (W)

ui(Yi(w,v,c)) =

so that each district bears a burden in proportion to the amount of wastes that it produces.
We remark that there exist multiple fair pricing rules because if there are multiple efficient
districts (i.e., | arg min;e n (v; (W) + ¢;(W))| > 1), then there are multiple assignment functions
that choose a single efficient district. Let W be the set of fair pricing rules. We say that an
allocation x € X (w, ¢) is a fair pricing rule allocation for (w,v,c¢) € D if x = ¢»(w, v, ¢) for some

P € V.

INote that creating multiple facilities with capacities less than W cannot be more efficient than creating
one facility with a capacity W at district j € argmin;en(vi(W) + ¢;(W)). This is because, in our model,
vi (W) + ¢;(W) is weakly concave, strictly increasing, and satisfying v;(0) + ¢;(0) = 0 for each i € N.



The fair pricing correspondence ¢ is a multi-valued function that associates with each

(w,v,c) € D the set of fair pricing rule allocations,

o(w,v,c) ={z € X(w,c) : x = P(w,v,c) for some ¢ € ¥}.

Note that the fair pricing correspondence associates the same allocation as a fair pricing rule
when the efficient district is unique.

Sakai [2010] shows that any fair pricing rule satisfies the following list of axioms; the core
property, monotonicity, and reallocation-proofness. Sakai [2010] also shows that the set of fair
pricing rules is characterized by individual rationality, monotonicity, and reallocation-proofness
when n > 3. These characterizations of the fair pricing rules indicate the validity and signifi-
cance of the rules.

When the social planner is about to exercise a fair pricing rule, he must collect information
on the amount of wastes, the construction cost, and the disutility for each district. Sakai [2010]
mentions that the information on the first two items can be collected, but the one on the last
item is hard to obtain. Pérez-Castrillo and Wettstein [2002] points out that it is often the case
that the parties concerned possess much more information than the social planner. For such
circumstances, a game form can be used as a tool for the uninformed social planner who wishes
to implement the rules. As the literature on implementation theory has proposed, properly
designed game forms can realize desirable allocations in equilibrium of the games even if the
social planner is given an insufficient amount of information.?

As for the implementation of the fair pricing rules, Sakai [2010] has pointed out that the
rules are not Nash implementable since they violate Maskin monotonicity (Maskin [1999]),
which is a necessary condition for Nash implementation. The present paper considers the
fair pricing correspondence, which is not Nash implementable either, as is discussed in the
appendix. However, it is implementable in subgame-perfect equilibrium as we propose in the
present paper.3

We consider a two-stage extensive game form I'(w, ¢) with perfect information. Following
Sakai [2010], we assume that w and ¢ are known but v is unknown to the social planner when
we consider the implementation problem.

The game form I'(w, ¢) consists of a game tree with the set of choices available to districts at

2For a survey on implementation theory, readers are referred to Jackson [2001].
3Necessary and sufficient conditions for subgame-perfect implementation are studied in Moore and
Repullo [1988].
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each decision node, and an outcome function O. A list s; of district i’s choice at each decision
node is called district i’s strategy. For a strategy profile s = (s, $2, ..., $n), the corresponding
outcome allocation is denoted by O(s) € X (w,¢).

Given v € VN, a pair (I'(w,¢),v) constitutes an extensive form game. A strategy profile
s is called a subgame-perfect equilibrium of (I'(w, c),v) if the choices specified in the strategy
profile constitute a Nash equilibrium in every subgame of (I'(w,c),v). The set of outcome
allocations corresponding to pure-strategy subgame-perfect equilibria of (I'(w, ¢),v) is denoted
by SPE(T'(w, ¢), v).

We say that a game form I'(w,c) fully implements the fair pricing correspondence ¢ in
subgame-perfect equilibrium if p(w, v, c¢) = SPE(I'(w,¢),v) for all v € VN. The full implemen-
tation requires that every fair pricing rule allocation can be realized as an equilibrium allocation

as well as every equilibrium allocation is in fact a fair pricing rule allocation.

3. Result

3.1. The game form

This section presents a two-stage game form that implements the fair pricing correspondence
in subgame-perfect equilibrium. Given (w,¢) € W x CV, which is assumed to be known to the

social planner, the game form I'(w, ¢) is defined as follows.

Stage 1. Each district ¢ € N simultaneously reports p; > 0. Let p = (p1,p2,. .., Pn)-
Stage 2. After observing p, each district i € N simultaneously reports ¢;(p) € {‘yes’, ‘no’}.
Each district i’s strategy is denoted by s; = (ps, ¢:(+)).

The outcome function. Let p* = min;ec x p;. The outcome allocation O(s) = (W, o, m) is
such that o(j) = 1, o(i) = 0 and m; = —p* - w; for each i # j, and m; = —c;(W) — 3>, mi,
where the accepter j is chosen by the following criteria.

Criterion 1: If any district reports ‘yes’ in Stage 2, then let j be the district with the
largest index among those who have reported the highest price in Stage 1 among those who
have reported ‘yes’ in Stage 2: j = max(arg maxXye (jc N.q, (p)=‘yes'} Pk)-

Criterion 2: If all districts report ‘no’ in Stage 2, then let j be the district with the least

index among those who have reported p* in Stage 1: j = min(arg min;en p;)-




Note that the game form is defined independently of v € V¥. In words, the game form is
described as follows. In Stage 1, each district is asked to report a price: The lowest price p* will
be the unit price that each district must pay when it brings one unit of wastes to a facility. In
Stage 2, each district is asked whether it wants to accept the facility. If any district says ‘yes’
(Criterion 1), the accepter is chosen from those who have reported the highest price among
those who have reported ‘yes’ in Stage 2. If all districts say ‘no’ (Criterion 2), the accepter is
chosen from those who have reported the lowest price p* in Stage 1. The accepter j will bear
the construction cost ¢; (W) of the facility and receive payments, which sum up to p*- (W —wj;),
from the other districts.

The result of the present paper is the following.

Theorem. The game form I'(w,c) fully implements the fair pricing correspondence ¢ in

subgame-perfect equilibrium. That is, for all v € V| we have ¢(w,v,c) = SPE(I'(w,c),v).

3.2. Proof
3.2.1. p(w,v,c) C SPE(I'(w,c),v)

Fix (w,c) € WxC" and take any v € V. Take any fair pricing rule allocation z = (W, 0, m) €
o(w,v,c). We have z = ¢(w, v, ¢) for some ¢ € V.
Let 5 = o~ !(1) be the accepter for the allocation x. Define the strategy profile s =

(s1,82,...,8y) as follows.

Each i € N chooses p; = p(w,v,c) in Stage 1. Let p = (p1,p2,--.,Dn)-
Each district’s choice in Stage 2 after observing p = (p1,p2,...,pn) reported in Stage 1 is
described as follows. Let p* = min;en p;-

For j = o7%(1), g;(-) is such that

v (W) +¢;(W)

W , and g;j(p) = ‘no’ otherwise.

qi(p) = ‘yes” if p* >

For each @ # j, ¢;(+) is such that

vi(W) + (W)

W , and ¢;(p) = ‘no’ otherwise.

qi(p) = ‘yes’ if p* >
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Lemma 1. For the strategy profile s, the outcome allocation O(s) = (W', o', m’) is equal

tox = (W,o,m).

Proof. First, W' = W is obvious by the definition of allocations.

Second, note that

min;en (v;(W) + ¢;(W))
w

= minpy; — w,v,Cc) =
p* =minp; p(w,v,c)

according to s. Since j is the accepter for the fair pricing rule allocation z, we have j €

arg min;e n (v;(W) 4 ¢;(W)). Hence ¢;(p) = ‘yes’ according to s;. For each i # j, the condition

. Ui(W)+ (W)

>
b W
never holds, so ¢;(p) = ‘no’” according to s;. Therefore, Criterion 1 of the game form I'(w, c)
applies and we have ¢’ = 0.
Third, for each i # j, we have m, = —p* - w; = —p(w, v, ¢) - w; = m; since o(i) = 0. For the
accepter 7j,
mi = —c;(W) - ng
i#]
= —c;j(W)+p(w,v,c)- (W —w;)
= —c(W)+ ﬂ—(—);‘—/c# W —p(w,v,c) - w;
= —p(w,v,c) w; +v;(W)
since o(j) = 1. Therefore, m’ = m and we have O(s) = (W’,o’',m') = (W,o,m) = z. O

We now show that the strategy profile s is a subgame-perfect equilibrium of the game

(T(w, ¢),v).

Lemma 2. Consider the subgame that starts at Stage 2 after p = (p1,pa2,...,pn) has been
reported in Stage 1. Suppose that each i € N in this subgame takes strategy q;(p) induced by s;.
The strategy profile q(p) = (q1(p), q2(p), - .+ qn(p)) is a Nash equilibrium of this subgame.

Proof. Let p* = min;cn p;. Let k be the accepter for the outcome allocation for the strategy
profile q(p).



First, we note that k cannot gain by any deviation from gx(p) to ¢.(p). Let y be the
outcome allocation before the deviation and 3y’ be the outcome allocation after the deviation.
If gr(p) = ‘no’ then the accepter remains k even after the deviation, and hence y = y": So k
cannot gain by the deviation. If ¢ (p) = ‘yes’ then the accepter after the deviation is either £ or
another district 7 # k. Since k cannot gain as long as he remains the accepter, let us consider
the case where the accepter changes into ¢ # k after the deviation. Before the deviation, k
obtains utility

uk(yr) = —ve(W) = cx(W) +p* - (W — wy)

as the accepter. After the deviation, k obtains utility
wk(yh) = —p" - w

as a non-accepter. Since gx(p) = ‘yes’ is induced by sj, we have
v (W) + e (W)

¥ = W
= (W) —cx(W)+p" - (W —wg) > —p* - wy,

= ur(yr) > wk(yp),

so k cannot gain by the deviation anyway.

Second, we note that each non-accepter i # k cannot gain by any deviation from g;(p) to
q.(p). Let y be the outcome allocation before the deviation and " be the outcome allocation
after the deviation. If ¢;(p) = ‘yes’ then i remains a non-accepter even after the deviation, and
hence y = y’: So i cannot gain by the deviation. If ¢;(p) = ‘no’ then ¢« may or may not be
the accepter after the deviation. Since ¢ cannot gain as long as he remains a non-accepter, let
us consider the case where i becomes the accepter after the deviation. Before the deviation, ¢
obtains utility

ui(yi) = —p* - wj

as a non-accepter. After the deviation, ¢ obtains utility

ui(y;) = —vi(W) — ci(W) +p* - (W — w;)
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as the accepter. Since ¢;(p) = ‘no’ is induced by s;, we have
o vi (W) + ¢;(W)

D = % )
= (W) —c(W)+p* - (W —w;) < —p* - w;,

= ui(y;) < wiyi),

so ¢ cannot gain by the deviation anyway:.
Since all districts cannot gain by any unilateral deviation, the strategy profile ¢(p) is a Nash

equilibrium of the subgame of our concern. OJ
Lemma 3. The strategy profile s is a subgame-perfect equilibrium of the game (I'(w, ¢),v).

Proof. We show that the strategy profile s is a Nash equilibrium of the game (I'(w, ¢), v),
which, together with Lemma 2, proves the present lemma. It is sufficient to show that for each
i € N, his strategy s; = (pi,qi(-)) is a best response to the strategies of the others, (sx)rzi,
where s = (pk, qx(+))-

By contradiction, suppose that district i’s deviation from s; to s; = (pi.q.(-)) is prof-
itable for him. Let (pi,p_;) be a vector that is obtained by replacing the i-th component
of p = (p1,p2,...,Pn) with pi. Since Lemma 2 implies that ¢;(p},p—;) is a best response to
(qr(pi. p—i)) k=i in the subgame starting at Stage 2 with (p}, p_;), district i’s another deviation
from s; to s/ = (p}, qi(+)) is also profitable for him. Henceforth, we focus on the latter deviation
from s; to s!. Note that we must have p # p;.

First, consider the case where p; > p;. In this case,

InillkeN(’Uk‘(W') + (’k(VV))

min{p,, min px} = }‘}éi]r\}pk =p(w,v,c) = W

ke N\{i}

Therefore, q;(p}.p—i) = q;(p) = ‘yes’ for j = o7 1(1), and qx(p}, p—;) = qx(p) = ‘o’ for each
k # j. Hence the outcome allocation remains unchanged after the deviation. This contradicts
the fact that s/ is a profitable deviation.

Next, consider the case where p. < p;. Let 2’ be the outcome allocation after the deviation,
and recall that, by Lemma 1, z is the outcome allocation before the deviation. Note that ¢
becomes the accepter after the deviation because

minge n (vg (W) 4+ cx(W))
W

o, , o
min sy min . = 5 <L NP = w,v,Cc) =
{pi, kEN\{i}m} p; < minp; p(w,v,c)



and hence qx(p},p—;) = ‘no’ for each k € N. Criterion 2 of the game form applies after the
deviation, and 7 becomes the accepter.

If 7 is the accepter both before and after the deviation, then

p; < p(w,v,c),

I

—v;(W) —e;(W) +p, - (W —w;) < —v;(W) — c;(W) + p(w, v, ¢) - (W — w;),

£

N
S—
A
e

s
;—/

which contradicts the fact that s} is a profitable deviation.
If i is a non-accepter before the deviation and becomes the accepter after the deviation,

then
millkeN(’Uk(W) -+ Ck(W)) . 'Ul(W) + CZ(W)
%% - %% ’
= —; (W) —c;(W)+p,- (W —w;) < —v;(W) —c;(W) + p(w,v,c) - (W — w;)

p; < p(w,v,c) =

< —p(w,v,c) - w;,

= () < uiE),

which contradicts the fact that s; is a profitable deviation.
We have proved that for each i € N, s; is a best response to (sk)rxi. Therefore, the
strategy profile s is a Nash equilibrium, which, together with Lemma 2, implies that s is a

subgame-perfect equilibrium. O

So far, we have shown the following: For any fair pricing rule allocation z € ¢(w,v,c), we
can construct the strategy profile s such that O(s) = z (Lemma 1) and s is a subgame-perfect

equilibrium of the game (I'(w, ¢),v) (Lemma 3). Therefore, the following proposition holds.

Proposition 1. For all v € VN, we have p(w,v,c) C SPE(I'(w,c),v).

3.2.2. SPE(I'(w,c),v) C p(w,v,c)

Fix (w,c) € WxCV and take any v € VV. Given the fair price p(w, v, ¢), whenever p(w,v,c) <

(vi(W) + ¢;(W))/W for some i € N, we define

vi(W) + ¢i(W)
W

* %

p™ =min{z € R: z > p(w,v,c) and z = for some i € N}.
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Note that p** is undefined when all districts are efficient.

Take any subgame-perfect equilibrium allocation z = (W,o,m) € SPE(I'(w,c),v). We
have x = O(s) for some strategy profile s that is a subgame-perfect equilibrium of the game
(I'(w,¢),v). Let j = 0~%(1) be the accepter for the allocation x. For each i € N, let p; and

¢:(+) be district 7’s choices induced by s;. Let p* = min;ey p;.

Lemma 4. Suppose that p(w,v,c) < (v;(W) + ¢;(W))/W for some i € N and p** is
well-defined. Consider the subgame that starts at Stage 2 after p = (p1,Pa,...,Pn) has been
reported in Stage 1. Suppose that for p* = min;en pi, we have p(w,v,c) < p* < p**. Let
k be the accepter for the outcome allocation y in this subgame for the strategy profile q(p) =
(1(D), q2(P), - - -, qn(p)) induced by s. Then k € arg min;e n (v;(W)+c;(W))/W. That is, district
k is efficient and (vp(W) 4+ cx(W))/W = p(w, v, c).

Proof. Since q(p) is induced by s that is a subgame-perfect equilibrium of the original game,
q(p) is a Nash equilibrium of the subgame of our concern.

By contradiction, suppose that k& ¢ argmin;e n (v;(W) + ¢;(W))/W. Then, it must be the
case that
—p" rw > = (W) — e (W) +p" - (W —wy.),

!

I

—p* - wi > uk(yk).

That is, for the price p* used in Stage 2, district k obtains higher utility as a non-accepter than
as the accepter. This implies that district k£ cannot become a non-accepter by any deviation
from qx(p) since ¢(p) is a Nash equilibrium of the subgame. So, we obtain the following two
conditions: (1) ¢;(p) = ‘no’ for each i # k,* and (2) k = min(arg min;ey p;).>

Now, consider { € argmin; ey (v;(W) + ¢;(W))/W. Clearly, ¢ # k. Note that

v (W) + (W)
W
= —p"we < —v(W) —ci(W) +p* - (W —wy),

= p(w,v,c) < p*,

= ue(ye) < —ve(W) —ce(W) +p* - (W — wp).

41f qi(p) = ‘yes’ for some i # k, district k can become a non-accepter by a deviation to g (p) = ‘no’ by
Criterion 1.

5Under the condition (1), if k # min(arg min;e v p;), then district k& can become a non-accepter by a deviation
to ¢}, (p) = ‘no’ by Criterion 2.



That is, for the price p* used in Stage 2, district ¢ obtains higher utility as the accepter than
as a non-accepter. This implies that district ¢ cannot become the accepter by any deviation
from q,(p) since q(p) is a Nash equilibrium of the subgame. So, we obtain the following three
conditions: (3) qx(p) = ‘ves’,% (4) pr = pe,” and (5) k > £.® However, the conditions (2), (4),
and (5) cannot hold simultaneously because the conditions (2) and (4) imply that £ < /. A

contradiction obtains. O

We now characterize a subgame-perfect equilibrium allocation z = (W, o, m). Recall that
p* = mingey p; is the price used in Stage 2 for a subgame-perfect equilibrium s associated with

the allocation x. Note that j = o~1(1) is the accepter for the allocation .
Lemma 5. If W > wj, then p* < p(w,v,c).

Proof. By contradiction, suppose that p* > p(w,v,¢). Take a non-accepter ¢ # j such that
w; > 0. Since W > wj, there exists such a non-accepter i.

For the case where p(w,v,c) < (v;(W) + ¢;(W))/W, consider i’s deviation from s; =
(pi,qi(+)) to st = (pl, qi(+)) such that p(w, v, c) < p; < min{p*,p**}. Let 2’ = (W,0’,m’) be the
outcome allocation after the deviation. By Lemma 4, ¢’(i) = 0, i.e., i remains a non-accepter

after the deviation. In this case, i can gain by the deviation because

pi <p",
= —p,-w; >-—p*-w,
=5 aglzl) > wm)

This contradicts the fact that s is a subgame-perfect equilibrium.

For the case where p(w,v,c) = (v;(W) + ¢;(W))/W, consider i’s deviation from s; =
(pi,qi(+)) to s& = (pl,q(+)) such that p(w,v,c) < p, < p*. Let 2’ = (W,a’,m’) be the out-
come allocation after the deviation. If i remains a non-accepter after the deviation, we obtain a

contradiction by a similar argument to the previous paragraph. If ¢ becomes the accepter after

6Under the condition (1), if g (p) = ‘no’, then district £ can become the accepter by a deviation to q;(p) = ‘yes’
by Criterion 1.

"By the condition (2), pr < pr. Under the conditions (1) and (3), if pr < p¢, then district £ can become the
accepter by a deviation to ¢y (p) = ‘yes’ by Criterion 1.

8If k < ¢, then k < £ since k # £. Under the conditions (1), (3), and (4) and k < ¢, district £ can become the
accepter by a deviation to ¢, (p) = ‘yes’ by Criterion 1.
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the deviation, ¢ can gain by the deviation because

’UZ(W) +Ci(W)
|14
= —v;(W)—ci(W)+p,- (W —w;) > —p} -w; >—p*-w;,

p(w,v,c) = < p; < p*,

= w;{xr) > ugley).

This contradicts the fact that s is a subgame-perfect equilibrium. O
Lemma 6. If W > w;, then p* > (v;(W) 4+ ¢;(W))/W.

Proof. By contradiction, suppose that p* < (v;(W) + ¢;(W))/W. Consider j’s deviation
from s; = (pj,q;(-)) to s} = (p},q;(-)) such that p; = (v;(W) + ¢;(W))/W and ¢}(p},p—;) =
‘no’, where (p}. p—;) denotes a vector that is obtained by replacing the j-th component of
(p1,p2s ..., pn) with p;-. Let 2’ be the outcome allocation after the deviation.

First, suppose that j remains the accepter after the deviation. Since q;- (pg-,p_j) = ‘no’, it
must be the case that Criterion 2 of the game form applies and p; = min{p’, mine s\ ;) pi}-
Note that the price used in Stage 2 after the deviation is pg-. In this case, j can gain by the

deviation because

p* <pj
= —u;(W)—c;(W)+p*- (W —w;) < —v;(W) —¢;(W) +p;- (W — wj),
/

— UJ'(IJ‘) <ui(;rj).

This contradicts the fact that s is a subgame-perfect equilibrium.

Second, suppose that j becomes a non-accepter after the deviation. Let p” be the price used
in Stage 2 after the deviation, i.e., p” = min{p}, min;e ;) p:}. Note that either [ p* < p" = p/; |
or [ p* <p” < pj | holds. In both cases, j can gain by the deviation because

< = - DOV 0
= —o;(W)—c;(W)+p*- (W —w;) < —v;(W) —c;(W)+p" - (W —w;) =—p" - wj,

= Uj(.Tj) < UJ(T;).



and

P* £ p// <p; _ UJ'(W)J/CJ'(W)’
= —v;(W)—¢;(W)+p* - (W —w;) < —v;(W) —¢;(W) +p" - (W —w;) < —p" - wy,

=5 wylEy) < e,

This contradicts the fact that s is a subgame-perfect equilibrium. O
Lemma 7. If W > wj, then x € p(w,v,c).
Proof. By Lemmas 5 and 6, we have

v (W) +¢;(W)
W

min;e y (v; (W) + ¢;(W))
W

<p* <p(w,v,c) =

and hence p* = p(w, v, ¢) and j € arg min;e n (v;(W) +¢;(W)). The choice of j at the beginning
of the present section ensures that o(j) = 1 and o (i) = 0 for each i # j. The outcome function

of the game form ensures that m; = —p(w, v, ¢) - w; for each i # j and

m; = _Cj(W) - Zm’
i#]
= —Cj(W) + p(w, v, c) - (W - wj)
w
—p('UJ, v, c) Wy —+ Uj(W)

—c; (W) + W —p(w,v,c) - w;

Therefore, z is a fair pricing rule allocation and hence z € ¢(w, v, c). O
Lemma 8. If W = w;, then j € argminen (vi(W) + ¢;(W)).

Proof. By contradiction, suppose that j ¢ argmin;en(vi(W) + ¢;(W)), that is, district
j is not efficient, p(w,v,c) < (v;(W) + ¢;(W))/W, and p** is well-defined. Define p*, =
minieN\{j}pi-

For the case where p*; < p(w,v,c), consider j’s deviation from s; = (P> q;(+)) to s =
(P, qj(-)) such that p > p* ; and ¢j(p}. p—;) = ‘no’. Let 2" be the outcome allocation after the
deviation. Note that j becomes a non-accepter after the deviation no matter which criterion of

the game form, Criterion 1 or 2, may apply. Furthermore, the price used in Stage 2 after the
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deviation is p* .. In this case, j can gain by the deviation because
o j can gain by

v (W) + ¢;(W)
W b
—pLy+ W > —ui(W) — g5 (W),

pZ; < p(w,v,c) <

!

I

wj(x}) > uj(ay).

This contradicts the fact that s is a subgame-perfect equilibrium.

For the case where p* ; > p(w,v,¢), consider j's deviation from s; = (p;,q;(-)) to i =
(P}, q;(-)) such that p(w,v,c) < p; < min{p**,p*;}. Let 2’ be the outcome allocation after
the deviation. By Lemma 4, district j, that is not efficient, becomes a non-accepter after the
deviation. Note that the price used in Stage 2 after the deviation is p}. In this case, j can gain

by the deviation because

0, (W) + & (W)

p; <p™ < = ;
= —p W > —v;(W) — c;(W),
= YLJ(;IT;) > uj(xj).
This contradicts the fact that s is a subgame-perfect equilibrium. O

Lemma 9. If W = w;, then x € p(w,v,c).

Proof. Lemma 8 ensures that j € argmin;en(v;(W) 4+ ¢;(W)). The choice of j at the
beginning of the present section ensures that o(j) = 1 and (i) = 0 for each ¢ # j. Although

p* = p(w,v,c) is not guaranteed in this case where W = w; and w; = 0 for each ¢ # j, the

outcome function of the game form ensures that m; = —p* - w; = 0 = —p(w, v, ¢) - w; for each
i # j and hence m; = —p(w, v, c) - w;j +v;(W). Therefore, z is a fair pricing rule allocation and
hence = € p(w,v,c). O

By Lemmas 7 and 9, for any subgame-perfect equilibrium allocation € SPE(I'(w, ¢),v),

we have x € p(w, v, c). Therefore, the following proposition holds.
Proposition 2. For all v € VN, we have SPE(TI'(w,c),v) C ¢(w,v,c).

Propositions 1 and 2 completes the proof of the theorem.



4. Conclusion

We have proposed a two-stage game form that implements the fair pricing correspondence in
subgame-perfect equilibrium. Our game form can be used as a tool for the social planner who
wishes to realize the fair pricing rule allocations but does not possess information on disutilities
of districts. Our game form is simple in the sense that messages that each district reports are
just a price, and ‘yes’ or ‘no’. Furthermore, our game form achieves full implementation. That
is, not only every fair pricing rule allocation can be realized as an equilibrium allocation, but
also every equilibrium allocation is in fact a fair pricing rule allocation.

It is true that our game form may possess disadvantages. One of them is that the game
form depends on information on wastes and construction costs. Although Sakai [2010] points
out that this information can be collected, it would be desirable if the game form is defined
independently of such information. We are now working to modify our game form and to prove

a new result, which will be presented in the future.
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Appendix: Nash implementability of the fair pricing correspondence

We show that the fair pricing correspondence ¢ is not Nash implementable by presenting an
example of a violation of Maskin monotonicity (Maskin [1999]), which is a necessary condition
for Nash implementation.

If a NIMBY problem is such that n = 2, w; = we = 1, v1(y) = 3y, v2(y) = 2y, and
c1(y) = ca(y) =y, then o(w,v,c) = {z} = {(W,0,m)} is such that W =2, 0(1) =0, 0(2) =1,
my = —3, and mo = 1.

Consider another problem for which vy is replaced by v} as follows: If a problem is such
that n = 2, w; = wy = 1, v1(y) = 3y, vh(y) = y, and ¢1(y) = c2(y) = y, then p(w,v1,v5,¢) =
{2’} = {(W,0,m’)} is such that W =2, o(1) =0, 0(2) = 1, m} = —2, and mj = 0.

We note that v} is a Maskin monotonic transformation of vy at x € ¢(w,v,c) since the

following condition holds: For all (W,¢”,m"”) € X (w, ¢c),

if —wva(0”(2) W) +mi < —va(a(2)- W)+ mp=—v2(2) +1=-3
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then —vy(0”’(2) - W) +my < —vh(0(2) - W) +mg = —v5(2) +1 = —1.

The above condition holds because ¢’/ (2) - W is either 0 or 2.7
Maskin monotonicity requires that z € ¢(w, vy, v}, c), but in fact & ¢ p(w,v1,v5,¢) = {z'}.

Therefore, ¢ violates Maskin monotonicity and hence ¢ is not Nash implementable.
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