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Abstract

This article studies the problem of estimating a lifetime distribution based on data obtained
by intercepted sampling. Of particular interest is the case where complete lifetime is not ob-
servable. Properties of nonparametric estimators based on observations of the residual lifetimes
are studied, and a bias correction method using the empirical histogram is proposed.

1. INTRODUCTION

Survival analysis is used in areas such as biology, medicine, engineering, epidemiology and
economics, to name just a few. When studying survival times or duration times, data are often
taken from items that are “alive” or “in operation” at a particular time point. This sampling
method, referred to as intercepted sampling, is in contrast to taking random samples over a
period of time, and is employed for its convenience and cost effectiveness. The method is par-
ticularly useful in cases where a controlled study of the items is not feasible. An important
feature of the method is that data obtained by intercepted sampling contain upward bias,
since items with longer survival times have higher probability of being “in operation” at a
particular time point, i.e. higher possibility of being a member of the intercepted population. It
is therefore necessary to take proper care of this bias when analyzing data obtained by inter-



cepted sampling.

There are many cases involving intercepted sampling, where, in addition to the problem of
observation bias, data on survival or duration times are either unavailable or only partially
available. When patients are screened for a certain disease, for example, it is only possible to
observe the current condition of the patient, not the initiation time of the disease. As another
example, consider the case where people on-line are sampled for the purpose of estimating the
time spent on the internet. It is more than likely that at the time of sampling, each individual
does not have an accurate record or memory of the length of time he/she has been on the in-
ternet. As such, the total time of their stay on-line cannot be observed. In such instances, it is
still possible to observe the time spent on-line after the sampling time point.

The objective of this article is to discuss the estimation of lifetime distribution from data on
the residual lifetimes (duration times) of the intercepted sample. The article is organized as
follows. Section 2 introduces basic notations and results. Estimation is discussed in Section 3,
and simulation studies are performed to assess the properties of nonparametric estimators in
finite samples. Other problems pertaining to the intercepted sampling method are discussed
briefly in Section 4. Section 5 concludes.

2. NOTATIONS AND PRELIMINARIES

It is assumed throughout the paper that data are obtained by intercepted sampling. The
distribution of survival or duration time will be called the lifetime distribution. In particular,
the lifetime distribution of the whole population will be called the population lifetime distribu-
tion. The survival time (current lifetime) of an item at the sampling time point is referred to
as its age.

The notion of intercepted sampling was formally studied by Vardi (1988). He argued
heuristically that when items are born randomly with individually and identically distributed
lifetimes, the lifetime of a typical item in the intercepted population follows the length-biased
distribution of the corresponding lifetime distribution of the whole population. Here, a length-
biased density f* associated with an arbitrary probability density f with domain [0, o] takes

the form fL(X)=.,,Af¢. Many authors have since argued heuristically that intercepted
_[O uf (u)du
sampling results in length-biased lifetime distribution, and estimation problems based on ob-
servations from length-biased densities have been studied extensively, including cases where
parts of the observations are censored. See Asgharsian, M’Lan, and Wolfson (2002) for a list
of references. Some have claimed that “choosing a sampling time point randomly” justifies
the use of length-biased densities. Random sampling of a time point, however, is not possible,
since we clearly cannot go back in time. Moreover, if the sampling time point need to be “ran-
domly selected” from within a long interval, intercepted sampling will lose its appeal as a con-
venient sampling scheme. It is therefore necessary to study the population existing at an
arbitrary fixed time point.
Momma (1991) gave a rigorous proof that an item selected randomly from the intercepted
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population does indeed follow the length biased distribution, under the assumption that the
population birth process in stationary Poisson and that the population at a given time point is
finite. The proof is valid for an arbitrary fixed time point, provided the birth process of the
whole population has started in the remote past. In addition, the distribution of age, along with
the joint distribution of age and lifetime of an item randomly chosen from the intercepted pop-
ulation were derived.

Let X" denote the age of an item in the intercepted population and Z°, its lifetime. Further,
let f,(z) denote the lifetime density, and F,(z) the corresponding lifetime distribution of the
whole population (variables with * represent variables in the intercepted population, whereas
variables without * represent variables in the whole population). The joint density of age X~
and lifetime Z" of an item selected randomly from the intercepted population is given by

fr(2) 0
_[: uf,(u)du

provided the population at the sampling time point is finite, and the birth process of the whole
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population is stationary Poisson. The marginal densities of X" and Z" are given by

Zfz(z)
)= (2)
S8 J‘“ uf, (u)du
and
f (X :LZ(X) (3)

w J:uf,(u)du '

while the conditional densities are given by

IA
=
IA
&~
N

X 1
fx*‘z‘ (x|z) - = 0
and

f,x(z|x):i-(i 0<x<z (5)
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respectively. The marginal density of age X" given by (3) is known in renewal theory as the
recurrence time density. The above relations serve as a basis when estimating the population
lifetime distribution F,(z) from data obtained by the intercepted sampling method. Note that
the value of X" does not enter into the joint distribution of X* and Z" in an explicit form, and
that given the value z of Z", X" is uniformly distributed.

3. ESTIMATION BASED ON RESIDUAL LIFETIMES

3.1 Distribution of Residual Lifetimes
When collecting data from the intercepted population, it is not always possible to observe



items’ ages and/or complete lifetimes. Consider, for example, the case where people in a shop-
ping mall are asked how long they have been shopping. The answers will at best be approxi-
mate, not precise. As a result, accurate values of the shopping times (lifetimes) will not be
observable.

A possible approach to estimate the length of times people spend shopping from this type of
data, is to recognize that data collected by surveying on-site contain observation errors, and
proceed with the errors-in-variables method. Instead of observing the value z of the lifetime Z*
of an item in the intercepted population, the value of y=z+¢ is recorded, where ¢ is the unob-
servable error component. Assuming that ¢ is independent and identically distributed with
mean 0, the density of Z" is obtained by integrating out the g

f(2)= 'ffzt(zls)fe(e)de. (6)

An alternative approach is to estimate the lifetime distribution based on observable quanti-
ties. In the shopping mall example, it is relatively easy to observe the times spent shopping
since the sampling time point, simply by asking the participants in the study to report the
time they exit the mall. These observations could, in turn, be used to estimate the lifetime dis-
tribution of the whole population. This is the approach taken in the article.

Let Y denote the remaining time (residual lifetime) of an item after interception. In order
to make use of the values of Y" to estimate the population lifetime distribution, it is necessary
to derive the relation between the distribution F,+(y) of Y* and the population lifetime distribu-
tion F,(z). But, by symmetry, F+(y) takes exactly the same form as the density of age (cur-
rent lifetime) of an item at interception. To see this, note that the distribution of Y'=Z"—X" is
obtained by first conditioning on X and using the relation between X" and Z" given in (5).
After some manipulation, it is seen that

fy*(y|X)=%. (7)

Inserting (7) and (3) into the relation

£o )= [ £, () e (2, (8)
it is seen that the density of the residual lifetime of an item in the intercepted population f,+(y)
is given by

1-F
f*(y)=——Z(L) v20. (9)

' J: ufy (u)du

A notable feature of the residual lifetime distribution given in (9) is that the density is mono-
tone decreasing, regardless of the form of the population lifetime distribution. Moments of this
distribution in relation to the population lifetime distribution F,(z) is seen to be
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E(Y"')=(k:{+1*;u, where x4, denotes the kth moment of the lifetime distribution of the whole

population. Since £(z*)=HL for the length-biased lifetime density. £(y*)=——E(z*). In
i, k+1

particular, E(Y'):%E(Z'). It can be seen that the variance of the length-biased lifetime Z°

exceeds the residual lifetime Y" if and only if 8u,u;>92.
Some examples of the density of ¥* corresponding to the distributional forms of Z are given
below.

Example 1. Weibul distribution
When the population lifetime follows the Weibul distribution, so that

the corresponding residual lifetime density becomes

ol
g
fr )=
A "1"(~+ lj
o
Note that when o=1, the distribution reduces to the exponential distribution, in which case

the density of ¥" is identical to that of Z due to the memoryless property of the exponential
distribution.

Example 2. Gamma distribution
When the lifetime follows a Gamma distribution with density

rorl ks
1) =
the corresponding density of Y" is seen to be
/,{ o =l (Ay)r—k—l
0= By

With proper interpretation, one can also think of discrete examples, such as number of visits
to doctors.
Example 3. Poisson distribution
When Z follows the Poisson distribution,
Ke?
fz(z): Al
z!

the corresponding distribution of Y~ is seen to be

Example 4. Negative Binomial distribution
For the negative binomial distribution,

i=lHr F(Z()T“&?l)(afa)a(aia):'




the corresponding distribution of Y is seen to be

e _’1{‘;' F(I‘;‘()lii&li2 1)(0:?: A )a[ «a i y) )‘ ’

3.2 Estimation

Momma (1996) studied the problem of estimating a continuous lifetime distribution based
on observations of items’ ages at interception. Since the distributional form of the residual life-
time is identical to that of age, the arguments hold valid for this case also. The difference is
that age is observed immediately upon interception, so that estimates of lifetime distribution
are obtained without delay, whereas a longitudinal study is necessary to collect data on resid-
ual lifetimes.

Likelihood function based on n observations of the residual lifetimes (y,,..., y,) takes the fol-

lowing form:

L Fz(yi)
i=l j:“fz(u)d“

Maximum likelihood estimation of parametric models is straightforward using this equation.

(10)

For nonparametric models, the following iterative algorithm proposed by Denby and Vardi
(1986) is useful.

Denby-Vardi (DV) Algorithm. Start with arbitrary positive numbers p@=(p\”,..., p}’) such that

3 p!” =1. Update the values of p"'=(p{"...., pi”) by the following:

i=l

-1
» (m) (m)
L r b 2 X
p("’“’:[z'—] < j=l.,n, m=01,..,
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where

(m

|
n" =p

m) Y 1
k=i
and y,, denotes the ith order statistics of the observations of residual lifetimes. The algorithm

n Zp-’

provides a solution p=(p,..... p,) to the problem of maximizing [][-Z—— which corresponds

n

- Z:y(,)p,-
=

to the nonparametric version of the likelihood function given by (10. The nonparametric maxi-
mum likelihood estimate (NPMLE) of the population lifetime distribution F, is then obtained

A "l . . . .
by a simple transformation 1:z(>’4;))=213/' Denby and Vardi’s algorithm was designed to find
=

the NPMLE under a decreasing density constraint, which for this case, correspond to the
residual lifetime density. For a detailed discussion on the validity of the use of the DV algo-
rithm to obtain estimates of the population lifetime distribution, see Momma (1996).
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3.3 Simulation Studies

To explore the properties of the NPMLE in finite samples, two simulations with 50 runs
each were carried out. In the first experiment, =200, and in the second, n=500. The underly-
ing population distribution in both cases is exponential with mean 50, and the estimates were
obtained using the DV algorithm. In the course of the study, it was discovered that larger
number of iterations of the algorithm did not necessarily produce better estimates. In fact, es-

timates of the population lifetime distribution I:“Z(y(,))zlifal after 50 iterations showed an

J=1
irregular and unnatural pattern compared to the estimates after 10 iterations. Furthermore,
estimates of mean lifetimes started to deviate from the true value at larger number of itera-
tions, while the value of the nonparametric likelihood function continued to increase. A possi-
ble explanation is that since a discrete function is being fitted to a continuous function, too
much fine tuning to a particular set of data produces undesirable results. Simulation results
suggest that it is best to stop the iteration when the increase rate of the nonparametric likeli-
hood function begins to slow down. For this reason, the algorithm was stopped after 10 itera-
tions in this study.

It was also found that the DV method has a tendency to under-estimate the population life-
times, and the bias was quite severe in some cases. Figures 1 and 2 depict histograms of the
50 mean lifetimes calculated from the estimated lifetime distribution £, corresponding to
n=200 and n=500, respectively. The true mean value is 50. The figures clearly indicate a sub-
stantial downward bias, with no clear indication of improvement in larger sample size. Even
with 500 observations, some estimates took values close to zero. This is caused by the local

2 b
bias at smaller values of the residual lifetime y. The residual lifetime density J,.(¥,)=="—
]};:y(”p,

is often over-estimated for values of y near the origin. This translates to the downward bias of
the lifetime estimate, since the mean of the population lifetime is the reciprocal of the residual

Figure 1. Estimated Mean Lifetimes Figure 2. Estimated Mean Lifetimes
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lifetime density at zero, as seen from (9).
Denby and Vardi proposed to correct the bias by flattening the peak of the density f, near
the origin. More specifically, they propose to substitute f,+ by the following:

f()=d. (Fy . (a)) 0<y<Fla) (1)
= cfy, () ﬁyi'(a) <y, 12)

where c is a normalizing constant chosen so that f,* integrates to 1. As for the value of o, they
suggest a small fraction, for example, 0.1. The bias-corrected lifetime distribution If"z is then ob-
tained by transforming fy*. Clearly, after adjusting for the bias, If“z(y)=0 for all values of y such
that 0O<y<F y;'(a). Consequently, the bias-corrected lifetime distribution If“Z takes a rather pecu-
liar form. In order to prevent ﬁz from taking zero values, Momma (1996) suggested linearly
increasing the values f,* by small amounts as y approaches zero.

Another limitation of the DV bias correction method is that it is designed only to reduce the
values of the estimated density of the residual lifetimes near the origin. As a result, when the
residual lifetime density in the vicinity of the origin is under-estimated before bias correction,
the DV correction exacerbates the downward bias, and consequently over-estimates the life-
time distribution, although the amount is usually not substantial.

In view of the above, a different method is proposed here as a means to correcting the bias.
In this approach, the peak value of the empirical histogram is employed to estimate the densi-
ty of the residual lifetime at the smallest observed value y,, Then, for a pre-determined small
value of a, values of the bias-corrected density estimate fy* for 0<ySI7‘y¥'(a) are calculated by
linearly connecting the estimated value of the density at F y;](oc) and the value of the empirical
histogram at y,,, In case the uncorrected estimate of the residual lifetime density at F y;'(a) ex-
ceeds the value of the peak of the empirical histogram, take the first value of y such that Fr(»
is smaller than the peak value, and proceed as above. The corrected value of fy* in turn is
transformed and scale adjusted to obtain the values of p=(p,,..., p,) with the condition that

p,=1. Finally, estimates of the lifetime distribution is obtained from the relation

Histograms of the estimated mean lifetimes based on 200 observations, using the Denby-
Vardi bias correction method and the empirical histogram method are shown in Figures 3 and
4, respectively. The value of a was set to 0.1 for both methods. In a number of cases where
the residual lifetime density near the origin was substantially over-estimated (the lifetime dis-
tribution under-estimated), ﬁy;l(yu,)xx so that condition (1) did not hold for any observed val-
ues of y. But these are clearly the cases that most needed the bias-correction. Accordingly, in
such cases, the value of the estimated density corresponding to the smallest observation y,
was substituted by the value of the estimated density at the second smallest observation y,,,
and the entire density normalized. As can be seen from Figures 1, 3 and 4, both bias correc-
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Figure 3. Estimated Mean Lifetimes Figure 4. Estimated Mean Lifetimes
Denyb-Vardi Bias Correction Method Bias Correction by Empirical Histogram
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tion methods produced better estimates of the mean lifetimes than the uncorrected case, but
the empirical histogram method proved to be more effective.

Figures 5 and 6 illustrate the estimated lifetime distribution functions without bias correc-
tion (uncorrected), bias-corrected using the Denby-Vardi method (DV) and bhias-corrected
using the empirical histogram (histogram), along with the theoretical distributions. Figure 5 is
an example of the case where, without bias correction, the lifetime distribution is under-esti-
mated, while Figure 6 corresponds to the case of over-estimation. The effectiveness of the
Denby and Vardi’s correction method depends heavily on a few values of the estimated densi-
ty of Y in the vicinity of If"y;'(oc), and therefore its performance is rather unstable. In some cas-
es where the uncorrected f,» substantially over-estimated the residual lifetime density near
the origin, the method reduced the bias drastically, while in other seemingly similar cases, it
had minimal effect. In contrast, the method using the empirical histogram produced consis-
tently good estimates.

The empirical histogram method is not without faults. A major difficulty of this method is in
finding the “adequate” empirical histogram. Since the objective is to estimate the value of the
density, it is not enough to detect its shape. In order to obtain an estimate of the density at a

Figure 5. Estimated Lifetime Distribution Figure 6. Estimated Lifetime Distribution
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single point, class width of the empirical histogram must be made as small as possible (and
therefore the number of classes made as large as possible) while retaining the distributional
form. Typically, histograms with about 600 bars gave good estimates of the value of the densi-
ty at its peak. It is advisable to start with an empirical histogram with a moderate number of
classes, and make the class width smaller while keeping the shape of the histogram intact. It
takes a trained eye to pick out the right histogram for estimation. Depending on the his-
togram chosen, the results of the bias-correction may vary considerably. Therefore, the
method should be used with caution.

Empirical histogram is also useful to determine whether the unadjusted NPMLE of the life-
time distribution is biased downward for a particular case. As has been noted already, since
the mean lifetime of the whole population corresponds to the reciprocal of the density of the
residual lifetime at zero, the value can be estimated from the empirical histogram of the resid-
ual lifetimes. Results of the simulation studies indicate that when the unadjusted NPMLE con-
tains noticeable downward bias, estimated mean lifetime using the empirical histogram always
exceeded the NPMLE by a substantial amount. This being the case, mean estimate from the
empirical histogram can be used to test the existence of the downward bias of the NPMLE.
When the NPMLE of the mean is significantly smaller than the estimate based on the empiri-
cal histogram, bias correction should be implemented.

3.4 Censored Observations

It is safe to assume that data on residual lifetimes will almost always include observations
censored from above. When an observation of the residual lifetimes is censored after a period
7, the density of the residual lifetime of the intercepted item becomes

vl » F’(‘) y<T
J': (. (u)du
f-(»)= 13)
[7[1- F(x)]ax e
I: uf, (u)du ’

The likelihood function including right censoring will then be of the form

=50 | (Lh-£@ad) " 4
il f:ufz(u)du j:ufz(u)du

where I=1 if the residual lifetime of item i is observed and /=0 if it is censored. Parametric
estimation based on (14) is straightforward. For nonparametric cases, since the DV algorithm
was originally proposed for cases including random right censoring, the method is still applica-
ble with only minor changes.
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4. DISCRETE OBSERVATIONS AND GENERAL WEIGHTED DISTRIBUTIONS

A couple of other problems concerning intercepted sampling methods are discussed briefly
in this Section.

4.1 Discrete Observations

Intercepted sampling is commonly used in epidemiological studies, where the object of the
study is to investigate the survival time of a certain disease. For clinical trials of a prevalent
disease, the initiation time of the disease is most likely unobservable. In addition, patients will
likely start a treatment program when diagnosed with a disease, so the residual lifetime is al-
so unobservable. As such, the only observable variable is the stage, or the condition of the dis-
ease at the sampling time point. Assume that the observable discrete variable W' indicating
the condition of the disease takes the value i when x,<X"<x,,,, where X" is as before, the du-
ration time of the disease at interception. Then,

PW>(i)=F X)—F.(x)

uf 0 {T[l F,(u du :H F_(u)]du}

0

:W{T'wﬂw» i) i) )

where P, (i)=P(W'=i).

Example Exponential distribution
When the underlying lifetime distribution is exponential so that F,(z)=1—e¢ %, the above rela-
tion (15) yields

pw' (l) ,+|(ae e g )—-.\’i(le_h’ —e )_(e“m —g )

In reality, the condition of the disease is not determined solely by the length of its duration
time. It depends on the patient’s various physical conditions, among other things. A more
elaborate model, such as regression type models, should be formulated to study such data.

4.2 General Weighted Distributions

As stated in Section 2, the distributional forms of the lifetime distribution and the residual
life time distribution of the items in the intercepted population were obtained under the as-
sumption of a stationary Poisson birth process of the whole population. In some cases, this as-
sumption does not hold. Consider, for example, the case of the time spent on the internet.
People are on and off the internet throughout the day. This means that for each person, a
stochastic process is formed where there is an on time (time spent on-line) and an off time
(time spent off the net). In other words, every person’s internet usage forms a renewal pro-
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cess with two alternating states. It is natural to assume that the length of the on time and the
off time are related to each other, and therefore a standard Poisson assumption is not likely to
hold for this case.

One way to generalize the distributional forms for cases such as this is to consider a more
general weighted density, where observations from the weighted density follows

o(2)f,(2)
[; @ (u) £ (u)du

Here, w(z) is a monotone weighting function to be estimated from the data. When w(z)=z, it
becomes the standard length-biased density, whereas w (z)=z* produces size biased density, of-
ten used for spatial data. For a semi-parametric estimation of this type of model, see Sun and
Wang (2006).

£1(2)=

5. CONCLUDING REMARKS

Intercepted sampling is a convenient way to obtain survival data. When observations on the
residual lifetimes of the intercepted items are used to estimate the population lifetime distribu-
tion, downward bias is often detected. Simulation studies suggest that with a proper use of the
empirical histogram, this bias of the NPMLE can be controlled. Comparison of the properties
of the moment based estimates and the NPMLE is an object of further study.
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