ベイズ推定を用いた実験・シミュレーション融合による

段ボール特性の高精度評価に関する研究

島村雅彦

<目次>

第1章 序論	1
1.1 本研究の背景	1
1.2 CAE を活用した設計技術1	1
1.3 数値シミュレーション解析の妥当性検証とベイズ推定	2
1.3.1 妥当性検証の必要性	2
1.3.2 ベイズ推定	3
1.3.3 事前分布	3
1.3.4 事後分布	3
1.4本研究の目的	4
1.5 段ボールの基本的構造と設計技術4	4
1.5.1 段ボールの概要	4
1.5.2 段ボールの数値シミュレーション解析10)
1.5.3 段ボールの数値シミュレーション解析に関する既存の研究	1
1.6 本論文の構成1:	3
【第1章 参考文献】14	4
<第2章 主な表記>	9
第2章 均質化法とベイズ推定の概要2	1
2.1 はじめに	1
2.2 均質化法	1
2.2.1 均質化法の定式化	1
2.2.2 面内のみ周期的な構造体に対する従来のアプローチチョンののののののののののののののです。20	6
2.3 段ボールの弾性係数	7
2.4 確率的評価のためのベイズ推定法28	3
2.4.1 従来の頻度統計学との相違点	3
2.4.2 確率の定義	9
2.4.3 事前情報の利用)
2.4.4 推定対象母数の扱い)
2.5 ベイズの定理	1
2.5.1 ベイズの定理の導出	1
2.5.2 事前分布設定・ベイズ更新	3
2.5.3 尤度	4

2.5.4 確率密度関数	. 34
2.5.5 事後分布の評価	. 37
2.5.6 自然共役事前分布	. 38
2.5.7 無情報事前分布	. 40
2.6 おわりに	. 43
【第2章 参考文献】	44
<第3章 主な表記>	47
第3章 段ボール構造の性質と問題設定.......................	50
3.1 はじめに	. 50
3.2 段ボール原紙	. 50
3.2.1 段ボール原紙の種類・特徴	. 50
3.2.2 環境変化が及ぼす段ボール原紙の強度へ与える影響	. 52
3.2.3 段ボール原紙の強度	. 53
3.3 段ボール	. 53
3.3.1 段ボールの構造と性質	. 53
3.3.2 段ボールの環境変化による強度	. 56
3.3.3 段ボールの構造体強度	. 57
3.3.4 段ボールの引張強さ	. 57
3.3.5 面圧力に対する強さ	. 59
3.4 段ボール試験	. 63
3.4.1 原紙の物性試験	. 63
3.4.2 段ボールシート	. 65
3.4.3 原紙と段ボールシート物性の関係	. 66
3.5 段ボール包装品の設計法とその問題点	. 66
3.5.1 段ボール箱設計	. 66
3.5.2 緩衝材	. 67
3.5.3 段ボールの数値シミュレーション解析	. 68
3.6 おわりに	. 71
【第3章 参考文献】	72
<第4章 主な表記>	. 75
第4章 実験と数値シミュレーション融合による	. 76
数値解析の提案	76
4.1 はじめに	. 76

4.2 調整済み弾性係数の必要性	
4.3 曲げ試験	
4.3.1 供紙材	
4.3.2 試験方法	80
4.3.3 試験結果	
4.4 均質化モデル	83
4.5 調整済み弾性係数の算出	
4.5.1 目標変位と数値解析	
4.5.2 応答局面法による調整済み弾性係数の算出	89
4.5.3 数値解析	
4.6 まとめ	
【第4章 参考文献】	
<第5章 主な表記>	
第5章 ベイズ推定を用いた確率的妥当性評価法	
5.1はじめに	
5.2 ベイズ推定による定量的評価の意味	100
5.2.1 確率的評価法の目的	100
5.2.2 階層ベイズモデルによる恣意性の排除	101
5.2.3 情報量基準 WAIC によるハイパーパラメータの最適化	102
5.2.4 数値解析の信頼性評価	103
5.3 調整済み弾性係数のばらつき評価	104
5.3.1 調整済み弾性係数推定モデル	104
5.3.2 情報量規準 WAIC を用いたハイパーパラメータの最適化	105
5.3.3事後分布の算出	108
5.3.4 MCMC 法の設定	111
5.3.5 調整済み弾性係数の事後分布	111
5.4 妥当性検証	112
5.4.1 調整済み弾性係数の 95%確信区間	112
5.4.2 調整済み弾性係数の確率的妥当性検証	114
5.5 まとめ	116
【第5章 参考文献】	117
第6章 結 論	119
<謝辞>	120

第1章 序論

1.1本研究の背景

本章では、産業分野での設計等における数値シミュレーション解析の重要性について示 し、数値シミュレーション解析を実用的に用いるためには正確な物性値を与える必要があ ること、解析結果がどの程度信頼できるかの妥当性検証が重要であることについて述べる. それらを踏まえて本研究の目的を明らかにし、本研究で提案する新しい解析手法の実用例 として段ボールを取り扱うことを述べ、その基礎的な知識とその設計方法について概観し て、段ボールが本研究の主張する手法の実用例として適切であることを示す.

1.2 CAE を活用した設計技術

(1) 数値解析の必要性

産業界での開発や設計環境では、計算機援用工学(Computer Aided Engineering, CAE)¹⁾を導 入する傾向にある. CAEとは、R. Lemon によって提唱された概念であり、機械製品のエン ジニアリングに計算機を活用することで、実験の効率化と開発の短期化を目標とした試み である.具体的には、計算機を用いた数値計算により構造、流体、熱移動等の連続体に対 して、連立微分方程式の初期値問題あるいは境界値問題で表される場の問題を離散化して 解く工学シミュレーションである. CAE を活用することで, 試作と試験の試行錯誤を繰り 返していた従来の設計法に比べ、製品の設計および開発を効率的に行うことが可能になっ ている.このように,設計段階において CAE による数値シミュレーション解析を活用して, 設計の一部を担う設計方法を解析設計(analysis design)と呼ぶ.近年では,製品開発に費やす 経済的コスト削減や開発工期の短縮、製品の品質および性能の向上を実現することができ、 試験的には測定することが不可能な現象のメカニズムも解明できるようになるなど CAE の 重要性は高い. CAE が普及する背景には、一般企業においても低価格で計算機性能の高度 な汎用コンピュータを利用できるようになったことや、コンピュータ支援設計(Computer Aided Design, CAD)²⁾が開発されたことで, CAD で解析対象となる構造物のモデルを作成し て, CAE ツールで解析を行なうといった CAD と CAE の統合化による環境整備が行なわれ たことが大きい.

有限要素法(finite element method, FEM)³⁻⁴⁾は,解析対象領域を節点(node)から成る要素 (element)に分割し,力と変位の関係から変形量を近似的に解くことで構造体の挙動を予測す る数値解法であり,外力を受けた構造体の変形量(deformation)や物体内部に発生する応力 (stress)の分布形状を評価することができる.

(2) 数値シミュレーション解析の物性値

数値シミュレーション解析において物性値は必須であり解析精度に影響を与える重要なパ ラメータである.物性値は既に値が定義されている材料もあるが,その種類は十分と言い 難い.精度良く解析を行うためには,正確な物性値を与える必要があるが,材料によって は事前に値が分からないことも多い.このような場合に取られる方法として逆解析 (inverse analysis)がある.逆解析は,既知である結果から未知である解析条件を推定する方法である. 具体的には,試験等により得られた試験値に基づき FEM を利用して逆解析を行うことで, 物性値を推定する.しかしながら,物性値を逆問題として推定する場合に目標値となる試 験値のばらつきは避けられず,実験値に含まれるばらつきが正確な物性値を推定する難易 度を高める要因となっている.そのため,逆解析的に得られた物性値を解析に用いると試 験値のばらつきが解析結果の精度に影響を与えるといった問題が無視できない.

1.3 数値シミュレーション解析の妥当性検証とベイズ推定

1.3.1 妥当性検証の必要性

前述したように、CAE ツールが充実するとともに試作,実験の代わりとして数値シミュ レーション解析が利用され,開発期間と経済的コストの大幅な削減が図られるようになっ た.一方で,数値シミュレーション解析の結果を有効に活用するには,解析結果の妥当性 を保証することが要求される.

解析設計では,解析結果の目標値が決まっており,この目標値となるように設計変数の 組み合わせを変えることで,逆解析的に解が求められる.しかしながら,設計変数として 用いられる材料特性などは,決定値(確定変数)ではなく,実際には,ばらつきのある統 計的な変数として取り扱うべきであると考えられる.このような考えの下では,設計変数 と目標値の関係は,統計的な相関関係があると捉えることができる.従って,設計変数の ばらつきが解析結果に与える影響について統計的な評価を行う必要性がある.その方法論 として,Model Verification and Validation (Model V & V)⁵⁾がある.Model V & V は,数値シミ ュレーション解析において,妥当な解析結果を得るために,どのようなモデル化を行い, モデルパラメータをどのようにして取り扱うかの概念である.基本的な Model V & V では, ベイズ推定によるアプローチ[®]が有効であると示されている.

ベイズ推定⁷⁻⁹は,条件付き確率の関係を応用したベイズの定理に基づく統計理論である. 元来は、パラメータの取り得る値に対する事前の情報を、観測データによって更新すると いう手法として発展してきたが、近年、ベイズ推定を活用した妥当性評価の実績が認めら れている.

1.3.2 ベイズ推定

ベイズ推定は、母数に対して解析者が持つ事前の情報を観測データによって更新を行う 統計的手法である.この事前の情報は、事前分布(prior distribution)¹⁰⁾と呼ばれる確率分布と して表される.事前分布は、推定結果の精度に影響を与える重要な要因であり、解析者が 母数に対して持つ情報量が多いほど、良い推定結果を得られる.また、事前分布に観測デ ータの情報が追加されることで更新された確率分布は、事後分布(posterior distribution)¹¹⁾と呼 ばれる.この事後分布は、統計モデルと観測データとの当てはまりの良さの基準となる尤 度(likelihood)と事前分布を乗ずることで求めることができる.ベイズ統計学では、推定結果 として事後分布の位置や形状にもとづいて推論を行う.

このように、ベイズ推定は事前分布と観測データの両方に基づいて推定される母数の確 率分布を推定する手法である.その一方で、ベイズ推定と対比する手法として従来の頻度 統計学¹¹⁾で知られる最尤法がある.最尤法は、パラメータには特定の真の値があることを 前提として、観測データの当てはまりの良さが最大になるような値を真の値に最も近いパ ラメータとして推定する方法である.ベイズ推定や最尤法は統計的手法に分類されるが特 徴や確率の解釈に大きな違いがある.本研究では提案する確率的妥当性検証にベイズ推定 を用いているが、その詳細については後の章で詳しく述べる.

1.3.3 事前分布

事前分布は、パラメータに対して類似する情報や解析者の経験を先験的な情報として反映することで設定される.そのため、先験的な情報量は各解析者で異なることから、共通の認識を持つ必要はない.また、事前分布に対して情報量の大きい事前分布を定義することが可能であれば、少数の観測データの下でも比較的良い推定結果を得ることができる.このような事前分布の活用は、ベイズ統計学の特徴であり客観性を重視する従来の頻度統計学においては許容されていない.したがって、事前分布を用いて少数の観測データから推定された結果は、初期の事前分布以上の妥当性を持つこととなる.

1.3.4 事後分布

頻度統計学およびベイズ統計学において推定結果を評価する際の代表的なものに区間推 定がある.この信頼区間は両統計学でその解釈や計算方法に違いがあることから、本論文 では、頻度統計学で用いられる区間を信頼区間(confidence interval)¹²⁾、ベイズ統計学で用い られる区間を確信区間(credible interval)¹³⁻¹⁴⁾として区別する.

頻度統計学における信頼区間は、パラメータに特定の真値があることを前提としており、 信頼区間の定義は複雑であることに加え、信頼区間を導き出すため多くの反復計算を必要 とする.また,大標本を前提として成り立つ頻度統計学では,信頼区間の評価等に十分な 標本を仮定した正規分布に基づく評価式の利用が不合理となる.

ベイズ推定では,推定の対象が特定のパラメータではなく,尤度と事前分布が与えられたもとでのパラメータの事後分布である.そのため,確信区間は,事後分布から直接計算でき,パラメータの真値が含まれる確率を下限と上限の区間をもって評価することが可能である.

1.4 本研究の目的

本研究の目的は、物性値が不明でばらつきを持った試験値から推定せざるを得ず、また その物性値を用いても必ずしも精度のよい数値シミュレーション結果が得られないような 複雑な問題に対し、物性値を確率分布として表現し、精度の保証された推定を行うと共に、 解析結果の妥当性も同時に示すことのできる新たな解析手法を提案することである.具体 的には以下の3点を提案する.

① 試験と数値シミュレーション解析の融合による物性値の逆解析手法

- ② ベイズ推定を利用して物性値に含まれるばらつきを確率的に表現する確率的評価法
- ③ ベイズ推定の確信区間を利用した解析結果の精度を保証する妥当性検証

さらに、段ボールの曲げ特性を例に提案手法の有効性を実証する.

1.5段ボールの基本的構造と設計技術

本節では、本論文で提案する手法の実用例として取り上げる段ボールについてまとめ、 段ボールの解析が本提案手法の有効性を検証する具体例として適当であることを示す. 段 ボールの包装技術は、二酸化炭素の増加に伴う温室効果ガス排出規制による環境保護の対 策を機に、プラスチック系の転換を一つの要因として発展してきた. 近年、インターネッ トを活用した通信販売による宅配の利用増加により、段ボールの需要は増加している. こ れらの背景には、段ボールがリサイクル性の高い紙材料であることの認識から、環境へ配 慮したものである.本項では、段ボール設計技術に関して日本工業規格(Japanese Industrial Standards, JIS)に規定される各種の規格・基準類を踏まえ述べる.

1.5.1 段ボールの概要

(1) 段ボールの環境配慮設計

日本規格協会(Japanese Standards Association)が発刊する JIS ハンドブックの包装用語¹⁵⁾で は、包装とは、"物品の輸送、保管、取引、使用などにあたって、その価値および状態を保 護するために適切な材料、容器などを施す技術、または、施した状態"と定義されている. 包装を施すために使用される包装材料は,主に,ガラス系,金属系,紙系,プラスチック 系などに分類され,包装の目的や被包装物の種類で包装技法は異なる.

本国では、循環型社会を形成するために環境基本法(Basic Environment Low)¹⁶,循環型社 会形成推進基本法(The Basic Low for Establishing the Recycling-cased Society)¹⁷⁾,資源有効利用 促進法(Low for the Promotion of Effective Utilities of Resource)¹⁸⁾,容器包装リサイクル法(Low for Promotion of sorted Collection and Recycle of Containers and Packaging)¹⁹⁾などの法体系に基 づき,リデュースの推進,リサイクルの推進および分別排出を容易にするための 3R(Reduce, Reuse, Recycle)推進自主行動計画²⁰⁾が策定されている.その中で、持続可能な循環型社会 を実現するために、設計段階において環境負荷を可能な限り低減することを目的とした環 境配慮設計(design for environment)²¹⁾や最適化の推進がなされている.このような取り組みの 実施により、包装の軽量化や薄肉化、最適な形状への転換、コンパクト化など資源使用量 の削減が図られている.これらの合理的な取り組みに対する枠組みの中で、環境負荷に配 慮した包装材料設計の基本的な考え方として下記のようなことが挙げられる.

① 使用材料・製造エネルギーの低減

② 再資源化および廃棄物の処理が容易

有害物質が発生しない

上記に示した包装材料設計の基本的な考え方に対する具体的な方法としては,包装材料の 減量化,リサイクルの容易な素材の使用,分別の容易な包装設計,脱塩素系樹脂材料・生 分解性樹脂を使用するなどにより対応されている.このような環境保護に対する背景もあ り,過去にはプラスチック系材料²⁰が包装材として貢献してきたが,廃棄過程で二酸化炭 素を排出するため社会問題として顕著化された.そのため,プラスチック系材料の役割の 多くが,環境へ配慮した紙系の包装材に転換されている.しかしながら,プラスチック系 材料は,衝撃吸収性や復元性といった機能特性をもち,さらに加工が容易であることや温 度・湿度の影響が少ないといった特徴があることからプラスチック系材料の機能特性を必 要する製品も数多く存在している.

国内における包装材では、プラスチック系材料から紙系材料に転換されたこともあり、 紙系材料が最も多く利用されている. その代表的な製品に、段ボール²³⁻²⁴⁾がある. 段ボー ルの歴史²⁵⁻²⁶⁾は古く、1850年代にイギリスで発明された. 発明当初は、波状に折ったボー ル紙をシルクハットの内側に張り付ける汗取り裏打ち材として使用していた. 1870年代に は、アメリカでガラス類の緩衝材として用いられるようになり、1900年代に井上貞次郎に よって国内初の国産化が実現されている. 段ボールの原料は、主にパルプであることから、 処理する際の二酸化炭素の排出量も少ないために環境の負担が小さく、リサイクル性も高 い. また日本では、段ボールのリサイクルシステムが確立されており、回収された使用済 み段ボールを再利用することで、90%以上のリサイクル率²⁰⁾が実現されている.

段ボールの特徴は、段ボールの素材および構造から耐衝撃性といった力学的特性を持ち、 厚さおよび寸法が自由に選択することができる.また、木材繊維であることから、金属や プラスチック材料などに比べて、切断や曲げ、印刷など製品への加工も容易であることに 加え、高速に大量生産することが可能である.このように、段ボールは時代のニーズに適 用した材料であり、輸送・保管に大きく貢献してきている.

(2) 段ボールの構造および性質

段ボールを製造するために用いる巻取り状の板紙を段ボール原紙(container board)と総称 しており,段ボール原紙は,ライナ(linerboards)²⁷⁾と中芯(corrugated medium)²⁸⁾に大別²³⁾で きる.これらの段ボール原紙は,段ボールを構成する各部材となり,ライナは段ボールの 裏面,表面のフラット,中芯は波形状に形成されることで使用される.段ボール用語²⁹⁾で は,段ボールを,"中芯の片面又は両面にライナを貼り合わせたもの.種類によって片面段 ボール,両面段ボール,両複面段ボール,複々両面段ボールがあり,また,用途によって 外装用段ボール,内装用段ボールに分類する."と定義している.Fig.1-1に段ボールの基本 的構造を示す.また,段ボールとして定義される各種の具体的な構造は以下となる.

- ① 片面段ボールは、一枚のライナに中芯を貼り合わせた段ボール
- ② 両面段ボールは、片面段ボールの段頂(flute top)にライナを貼り合わせた段ボール
- ③ 複両面段ボールは、両面段ボールの片側に片面段ボールの段頂を貼り合わせた段ボール
- ④ 複々両面段ボールは、複両面段ボールの片側に片面段ボールの段頂を貼り合わせた段ボ ール

段ボールは、中芯の構造が波形状であることから、中芯が周期性をもつことになる. ②の 両面段ボールは、面内にのみ周期性があり、厚さ方向に周期性がない単層構造であるのに 対して、③、④の複両面段ボールと複々両面段ボールは面内周期に加えて厚さ方向に対し ても周期性を有する複層構造である.

段ボールを構成するには、中芯とライナを貼り合せる必要がある.この貼り合わせには、 貼合用接着剤が用いられる.オーストラリアや中東アジアなど一部の地域を除いては、国 際的に貼合用接着剤としてコンスターチ(corn starch)を主に用いた工業用澱粉を使用してい る³⁰⁾. 段ボールの貼合用接着剤は、アメリカのスタインホール社(Stein, Hall & Co., Inc)で開 発されたスタインホール型澱粉接着剤³¹⁻³³⁾と, コーンプロダクツ(Corn Products Co., Inc)社で 開発されたノーキャリア型澱粉接着剤³⁴³⁷⁾が大部分を占めている.スタインホール型接着 剤は、主にヨーロッパや東南アジアで用いられている。その特徴は、経済的コストの高い 低粘土で高濃度化する化工澱粉を必要とする.一方で、国内では主にノーキャリア型接着 剤を使用している.ノーキャリア型接着剤は、経済的コストの低い未化工澱粉のみで調整 が可能であり, 接着剤調整装置の自動化も容易に可能である. また, 接着剤調整時には, 澱粉粒を均質となるよう部分的に膨張させる所に最大の特長があり,ライナと中芯を貼合 する際の糊化が容易であることから高速貼合性に優れていると報告されている.しかし, 接着機構としてはスタインホール型接着剤の接着機構を踏襲しており、この機構では中芯 の段頂に塗布された接着剤がライナと中芯との間で加熱されることで、澱粉粒が膨張糊化 してゲル化することで、初めて接着に必要な状態となる.このように、段ボール貼合用接 着剤は、スタインホール型接着剤とノーキャリア型接着剤の大部分で未糊化澱粉であり、 ライナと中芯との接着する際に加熱によって初めて未糊化澱粉が糊化して接着力の作用が 働くメカニズムである³⁸⁻³⁹⁾.

段ボール構造体は、外観は厚い板状であるが、その内部は中芯が段ボール構造全体に分 布している.また、中芯は、段ボールを製造する抄紙機の都合により進行方向に波形状が 平行に配向する特徴を持つ.Fig.1-2に中芯の方向を示す.段ボールでは、中芯の配向する 向きで目方向を定めており、中芯の形状が平行に並んでいる方向を抄紙方向(machine direction)、抄紙方向に対して垂直となる方向を垂直方向(cross direction)と区別している.

段ボールの特長は、抄紙方向と垂直方向で、引っ張りや圧縮といった外部からの作用に 対して力学的性質が異なる異方性材料⁴⁰⁾であるといえる.また、外気の温度や湿度は段ボ ールの剛性に影響⁴¹⁾を与える.以上のことから段ボールを設計する際には、異方性や環境 の変化といった材料力学的性質および機械的性質を考慮する必要がある.

7

Fig. 1-2 Machine direction (MD) and cross direction (CD) of corrugated cardboard

(3)段ボールの強度および用途

段ボール製品の設計では,強度を決定する要因として段ボール原紙の紙質と段(flute)があ る.段ボール原紙の強度は,再利用される古紙とバージンパルプの配合比率による1平方 メートルの重量によって分別される.その配合の割合は,バージンパルプの使用量に比べ 古紙の利用量が圧倒的に多い.また,国内では,純パルプ100%の外装用段ボールは存在し ない.一方で段⁴²⁾は,中芯の単位長さ辺りの波形の数と波形の高さで強度が分別されてい る.

段ボール製品は前述したライナの紙質と段を組み合わせることで,保管,振動,衝撃, 温度や湿度といった外乱から被包装物を保護するため要求される強度を満たすように設計 される.包装設計に要求される条件としては,段ボール箱を例に下記のことが挙げられる ⁴³.

- 1) 被包装物の寸法,形状,Gの限度
- 2) 静重圧-積み重ねている時の積圧力の条件の種々
- 3) 衝撃振動に対し,緩衝性の条件の種々
- 4) 防水, 耐水性についての適切な化工についての種々の条件
- 5) 熱断性, 伝導性, 通気性が被包装物に適正条件の種々
- 6)気候、季節によっての輸送方法および輸送機器によっての保管場所・作業場の条件 近年経済の国際化が進展する中で、国内の製造事業者は国際化競争に対応するため、製

造拠点の海外展開を積極的に進めている.製造拠点の海外進出にともない,段ボール箱や 緩衝材などの包装材は拠点地域で確保する一方で,包装設計に対しては,設計技術や経験 が要求されることもあるため,国内でその設計を担う被包装物の製造と包装設計との間で 二分化した事例が増えている.海外に製造拠点を持つ被包装物の包装設計では,国内製と 海外製において段ボール原紙の紙質に差異があることに加え,海外製の段ボールシートお よび段ボール原紙の強度に関する情報も乏しい.そのため,包装設計を行う際には,海外 拠点地域の包装材の特性を考慮する必要もある.

(4) 段ボール設計

段ボールの包装材設計において,被包装物の破損に繋がる主な原因は,輸送中に温湿度 が変化することで,必要とされる強度が設計時より低下⁴⁴⁾することや輸送中の積み下し, 輸送の時の衝撃⁴⁵⁻⁴⁶⁾である.そのため,段ボールの包装材設計では,被包装物が破損に至 ることのないように,輸送環境や輸送手段を考慮して安全側となるような設計が必要とな る.一方で,単に包装材の使用量を増やせば安全側の設計となるが,安全側に寄り過ぎた 設計は,過剰包装に成り得るため環境配慮設計を推進する中で,このような設計は避ける 必要がある.

段ボールの用途として段ボール箱⁴⁷⁾は、最も利用頻度の高い製品である.段ボール箱の 設計は、輸送環境および保管環境による条件を考慮し段ボール箱に要求される圧縮強度か ら段ボールの材質構成を決定している.この圧縮強さは、箱の縦幅と横幅の合計と強い相 関に基づいた複数の推定式⁴⁸⁾が提案されている.その代表的な推定式として McKee 式⁴⁹⁾ と Kellicutt 式⁵⁰⁾がある.米国では、段ボールシートの圧縮強さを用いた McKee 式が活用さ れている一方で、国内ではライナのリングクラッシュ値⁵¹⁾を基本構成要素とする Kellicutt 式が活用されている. 国内で Kellicutt 式が普及していることに関しては, 実用性の高さ⁵²⁾ があるが、その他にも推定値を求めるための計算の容易さと段ボール箱を製造するための 発注方式が背景にあると考えられている⁵³⁾. Kellicutt 式から推定された圧縮強度を基に設計 された段ボール箱は、包装の評価試験 54を実施することで、設計した段ボール包装材の性 能評価を行う. 包装の評価試験は、荷重試験 55)、振動試験 56)、衝撃試験 57)などにより被 包装物の破損状況を確認する.この評価試験により、段ボール包装材に必要とされる性能 評価を満たさない場合には,再度設計へと戻り検討が行われている.しかしながら,Kellicutte 式を用いた段ボール箱の設計は、これまでに実績はあるものの、リングクラッシュ値を用 いて推定される圧縮強度が過大評価となることは経験的に知られている。また、段ボール 原紙がもつ強度のばらつきや段ボールの箱の利用環境が不透明さから、Kellicutte 式から求 めた圧縮強さにより設計された段ボール箱は、設計通りの強度を期待できないといったこ

とも指摘されている.

緩衝材の設計では、被包装物の重量や寸法および輸送環境といった基本情報の他に許容 衝撃値や脆弱部位の指定も情報として加えられる.発泡プラスチック系の緩衝材に関して は、これまでに基礎データや設計技法⁵⁸⁾が確立されており、一般的に活用されている.し かしながら、段ボールなど紙系緩衝材については、緩衝設計の基礎となる加速度特性や安 全な緩衝材使用量を割り出すためのデータ整備が不十分であることから、一般的な緩衝設 計技法は今のところ確立されていない.そのため、緩衝材設計では、緩衝材の使用量を過 去の経験から決定している.また、経験的に決定された緩衝材の評価方法は、事前に製品 が落下する高さを想定し、想定された落下高さから製品が落下した時に発生する加速度が 製品の許容加速度よりも小さくなくてはならない.この際に、被包装品に破損が確認され た場合には、再度強度の見直しを必要とする.すなわち、緩衝設計では緩衝材の使用量を 過去の経験から決定し、試作および試験を実施することで被包装品に破損がないかを確認 するといった試行錯誤の繰り返しに依存した設計技法となっている.また、緩衝設計では、 被包装物に対するその場限りの設計となることに加え、内容が異なれば設計の初期段階に 戻り新たに設計する必要があるため、このことが緩衝設計の不効率さを高めている.

段ボール箱や緩衝材といった製品に利用される包装の評価試験は,設計と行う上で非常 に重要な項目であるが,試験方法が実際の輸送環境や保管環境を忠実に再現できていない など課題が残る点も多い⁵⁹.

1.5.2 段ボールの数値シミュレーション解析

先に述べたような問題点を解決し、段ボール製品の品質向上を図るには数値シミュレー ションが有効であると考えられるが、実際の段ボール性能を精度よく評価するには、完全 モデルを用いた三次元解析を行なう必要がある.しかしながら、段ボールの完全モデルを 作成するには、解析範囲全ての中芯をモデル化する必要がある.また、ライナと中芯を貼 合する糊は、段ボールの剛性を保つ一つの要因であることから、糊の影響を考慮したモデ ル化が必要となる.このようなことから、完全モデルを用いた段ボールの三次元解析では、 解析領域に対して要素分割を行うと節点数および要素数が極めて多くなり、計算コストに よるメモリの消費量や解析に要する計算時間が現実的ではない.特に荷重が与えられた時 のライナと中芯との接合部における変形挙動は解析結果を評価する上で重要になるため密 な要素分割を必要とする.

1.5.3段ボールの数値シミュレーション解析に関する既存の研究

(1) 段ボール解析におけるモデル化の検討

段ボールの構造は,波形状を伴う中芯が構造全体に分布している.そのため,三次元解 析を行なうには,解析範囲に含まれるすべての中芯を詳細にモデル化する必要がある.ま た,段ボールの解析をできるだけ高精度で評価するには,段ボールの挙動でクリティカル とあり得る中芯の波形状やライナと中芯の接合部に対して密な要素分割が要求される.さ らに,段ボールは異方性の機械的特性をもつ構造体であるため,材料特性を十分に考慮し て解析に取り入れなくてはならない.

中川ら 60-61)は、段ボールシートの中芯及びライナをシェル要素でモデル化した詳細モデ ルとソリッド要素でモデル化した簡易モデルの解析例を示している.シェル要素でモデル 化した詳細モデルを用いてエンドクラッシュ解析を行った荷重-変位特性の解析例では, 材料モデルは異方性や塑性特性を考慮したデータを用いて解析を行っているが、線形範囲 の荷重-変位特性において実験値と解析結果で誤差があり、精度良く解析できているとは 言い難い.また、段ボールシートを単一素材と見なして全体をソリッド要素でモデル化し た簡易モデルによる解析例では、ソリッド要素に対する材料モデルについては 3 軸独立で それぞれ異方性かつ非線形特性を考慮し、物性値はライナや中芯単体での物性値ではなく、 段ボールシートの物性値を試験(フラットクラッシュ試験)から求めて解析に利用してい る. 簡易モデルの解析例においても線形範囲の荷重-変位特性で実験値と解析結果の挙動 は完全に一致しておらず、精度良く解析できているとは言い難い。これらのことから、段 ボールのモデル化において異方性を考慮した場合には、試験から求めた物性値を利用した としても解析精度が低下しやすい.特に、段ボールのような異方性が強い材料では、剛性 マトリクスの各成分が大きな値を持つ成分と小さな値を持つ成分が混在することになるた め、単純に試験から求めた物性値を利用しただけでは解析誤差が大きくなりやすいと考え られる.

以上に述べたように,段ボールに対して数値シミュレーション解析を適用する取り組み が従来から行われてきているが,発展途上の部分も多く残っている.特に,段ボールの解 析設計は一般的な解析技法が確立されておらず,依然として,これまでの試行錯誤による 設計技法を踏襲しており,FEMを活用して効率的な解析方法を示すことの意義は大きい.

(2) 段ボールに対する均質化法の適用

ボールを対象とした解析では、その周期性に着目した均質化法(homogenization method) ⁶²⁻⁶³⁾を適用する試みも行われている.均質化法は、複合材に対して実績のある解法であり、 段ボールの解析においても有用な手法であるの一つである. 段ボールの完全モデルを用いた FEM の解析では、計算機性能の向上や並列計算の技術発 展が進み、比較的容易に解析結果を得ることが可能となりつつある.しかしながら、この ような方法では、並列計算を行うための環境整備や技術が必要となるため、一般的な解析 技術においては実用性が乏しい.そのような中で、均質化法⁶²⁻⁶³⁾は、幾何学的形状および その周期性構造を効率よく解析できることから、段ボール構造体においても有用な手法で あるといえる.均質化法は、巨視的構造とそれを構成する微視構造による二種類の空間的 スケールが異なるモデルの連成によるマルチスケールモデリング手法である.この手法で は、微視構造に均質化特性(homogenization character)を導入し、これを巨視的なマクロ構成 式によって表現することで、微視的構造が持つ形状の特徴を考慮しながら巨視的構造の解 析を可能とする.すなわち、三次元解析で用いるモデルは、解析の対象となる構造物の一 周期をモデル化した微視構造モデル(micro model)と構造体全体を簡易的にモデル化した巨 視構造モデル(macro model)のみで三次元解析が可能となる.そのため、解析の過程で完全モ デルを利用しなくて済むことからも、段ボールの効率的な解析手法であるといえる.

均質化法の歴史⁶⁴⁻⁶⁵は、1880年代の Lindstedt および 1890年代の Poincare により初期値 問題を対象として、解の摂動展開の際にスケールの異なる 2 つのパラメータ変数を導入す ることで、発散項を除去しつつ展開形の各項を順次定めることを示した摂動法の研究が始 めとされ、多くの境界値問題⁶⁶に摂動法が適用された.また、1970年代には、工学分野で 複合材料の発達を背景として、複合材料の挙動を記述するための理論として期待され、仏 ⁶⁷⁾、旧ソ連⁶⁸⁾、フランス⁶⁹⁾、米国⁷⁰⁾、の応用数学者により同時期に均質化法が開発されて きた.特に、1980年代以降には、Lionsを中心としたグループによる物理数学に現れる主な 初期値・境界値問題への適用が系統的に研究され、均質化法における理論的基礎の礎を築 かれている⁶⁹⁻⁷¹⁾. Bubska⁷⁰⁾らは、均質化法の理論は数値解析によるシミュレーションを前提 として構築された理論であることを主張し、均質化法を数値解析に応用して具体化するた めの数値解析法の開発が進められた.さらに、1990年代以降は、米国ミシガン大学の Kikuchi を中心とするグループにより、均質化法のより高度な応用を意識した有限要素解析理論と 具体的アルゴリズムの研究が進められた⁷²⁻⁷⁵.

現在,均質化法の理論は,全方向に周期性を有する構造体に限り理論が確立されている ^{62,67,69,71)}.そのため,全方向に周期性を有する複両面段ボール,複々両面段ボールといった 複層段ボールに対しては,均質化法を適用した試み⁷²⁾が既に行われている.川島ら⁷³⁻⁷⁶は 均質化法を複層段ボールに適用して設計の効率化・迅速化を図るための静的解析および動 的解析の検討を行っている.一方で,板厚方向に周期性のない両面段ボールに対しては, 均質化法をそのまま適用することが困難であることから,均質化法による三次元解析の取 り組みは進んでいない.しかしながら,段ボールの三次元解析に対する均質化法の実用性 を考慮すれば、両面段ボールにおいても均質化法を用いた三次元解析の必要性は高い.

1.6 本論文の構成

本論文の構成は、以下の通りである.

第2章「均質化法とベイズ推定の概要」で、本論文で用いる均質化法と、確率的評価法 で用いるベイズ統計学の理論や既存の研究等について述べる.まず、段ボールのような複 雑な構造物を対象とする数値シミュレーション解析でしばしば用いられる均質化法の概要 について述べ、均質化理論の定式化を示す.本論文は、段ボールの物性値を逆解析で求め るが、段ボールが異方性を有するために物性値を同定することの難易度が高いことについ ても述べる.ベイズ統計学に対しては、従来の統計的手法である頻度統計学と比較してそ の特徴やアルゴリズムの相違点を述べた上で、ベイズ統計学の特徴として、事前分布の利 用により、少ない観測データで精度良く推定することができることを述べる.さらに、す べてのパラメータを確率密度分布で表すことができるために、ベイズ推定の特徴が本提案 の確率的妥当性検証に有効であることについて述べる.

第3章「段ボール構造の性質と問題設定」では、本論文における研究の実用例に挙げた 段ボールについてその構造や性質および設計法の概要を述べた上で、設計の問題点につい て既存の研究を中心にレビューし、数値シミュレーション解析の必要性を述べる.そして、 既存の研究で行われている解析を示すことで、難易度が高い問題を対象に本論文の提案手 法の有効性を示していくことを述べる.

第4章「実験と数値シミュレーションの融合による数値解析の提案」では、本論文の提 案手法の1つである実験と数値シミュレーションの融合による解析方法を段ボール解析を 具体例として示し、解析結果が試験値に対して十分な精度を持つことを過去の研究例とも 比較しながら検討する.

第5章「ベイズ推定を用いた確率的妥当性評価法」では,第4章で求めた物性値に含ま れる測定値のばらつきをベイズ推定により推定する確率的評価法および解析結果の定量的 評価法について述べる.

第6章「結論」では、本論文で得られた知見をまとめ、結論とする.

【第1章 参考文献】

- J. R. Lemon, S. K. Tolani and A. L. Klosterman, Integration and Implementation of Computer-Aided Engineering and Related Manufacturing Capabilities into the Mechanical Product Development Process, CAD-Fachgespäch, pp.161-183 (1980)
- 2) 鈴木宏正, CAD における製品情報の表現 現状と将来 -, 図学研究, Vol. 28, No. 4, pp.37-45 (1994)
- O. C. Zienkiewicz, R. L. Tayler, J. Z. Zhu, The Finite Element method: Its Basis and Fundamentals, Elsevier (2005)
- 4) O. C. Zienkiewicz, R. L. Tayler, J. Z. Zhu, The Finite Element method for Solid and Structural, Elsevier (2005)
- 5) 白鳥正樹, 越塚誠一, 吉田有一郎, 中村巧, 堀田亮年, 高野直樹, 工学品質シミュレーションの品質保障と V&V, 丸善出版 (2013)
- 6) K. F. Alvin, W. L. Oberkampf, K. V. Diegert and B. M. Rutherford, Uncertainty Quantification in Computational Structural Dynamics: A New Paradigm for Model Validation, Society for Experimental Mechanics Inc, 16th International Model Analysis Conference, Vol. 2 (1998)
- 7) T. Bayes, LII. An Essay Towards Solving a Problem in the Doctrine of Chances, PhilosophicalTransactions of the Royal Society of London, Vol. 53, pp. 370-418 (1763)
- 8) 松原望, ベイズ統計学概説, 培風館 (2010)
- 9) M. B. Christopher, Pattern Recognition and Machine Learning, Springer, pp. 137-156 (2006)
- 10) 森治憲, ベイズ法における事前分布の持つ情報の評価法, 日本統計学会誌, Vol. 40, No. 1, pp.1-22 (2010)
- 11) 渡辺澄夫, ベイズ統計の理論と方法, コロナ社 (2012)
- 12) 北村隆一,尾崎博明,東野達,中北英一,堀智晴,工学のための確率・統計,朝倉書店,p.
 154 (2006)
- 13) 渡辺洋, ベイズ統計学入門, 福村出版, p. 14 (1999)
- B. P Carlin and T. A. Louis, Bayesian and Empirical Bayes Methods for Data Analysis: Second edition, Chapman &Hall/CRC, p.17 (2000)
- 15) 日本規格協会 編, JIS ハンドブック 63 包装, 日本規格学会 (2018)
- 16) 環境基本法, http://elows.e-gov.go.jp/search/elowsSearch/elaws_search/lsg0500/detail?
 lawId=405AC000000091&openerCode=1(閲覧日:2020年5月7日)
- 17) 循環型社会形成推進基本法, http://elaws.e-gov.go.jp/search/elawsSearch/elaws_search
 /lsg0500/detail?lawId=412AC0000000110(閲覧日:2020年5月7日)
- 18) 資源有効利用促進法, http://elaws.e-gov.go.jp/search/elawsSearch/elaws_search/lsg

0500/detail?lawId=403CO000000327(閲覧日:2020年5月7日)

- 19) 容器包装リサイクル法, http://elaws.e-gov.go.jp/search/elawsSearch/elaws_search/lsg 0500/detail?lawId=407AC000000112 (閲覧日:2020年5月7日)
- 20) 3R 推進団体連絡会, 容器包装 3R のための第 3 次自主行動計画 (2016)
- 21) 小島瞬治, 平田成, 包装の環境配慮 JIS Z 0130 規格群の開発(特集 環境開発),日本包装技術協会, Vol. 53, No. 12, pp. 880-888 (2015)
- 22) 葛良忠彦, プラスチック包装・容器の歴史と機能, 廃棄物資源環境学会誌, Vol. 21, No. 5, pp. 273-280 (2010)
- 23) 五十嵐清一, 段ボール包装技術入門, 日報ビジネス (2008)
- 24) M. C. Kauhal, V. K. Sirohiya and K. Rathore, Corrugated Board Structure: A Review, International Journal of Application of Engineering and Technology, Vol. 2, No. 3, pp. 228-223 (2015)
- 25) 東山哲, 包装アーカイブス 段ボール, 日本包装学会誌, Vol. 19, No. 4, pp. 329-337 (2009)
- 26) H. F. Rance, Effect of Water Removal on Sheet Properties The Water Evaporation Phase, Tappi, Vol. 37, No. 12, pp. 640-654 (1954)
- 27) 日本工業規格, JIS P 3902, 段ボール用ライナ
- 28) 日本工業規格, JIS P 3904, 段ボール用中しん原紙
- 29) 日本工業規格, JIS Z 0104, 段ボール用語
- 30) 日本スターチ・糖化工業会,日本スターチ・糖化工業会報, No. 7 (2007)
- 31) J.V. Bauer, Stein Hall Manufacturing Company, Method of making ply board, U.S. Patent 2,051,025, 1936-8-18
- 32) J.V. Bauer, Stein Hall Manufacturing Company, Plyboard Adhesive, U.S. Patent 2,102,937, 1937-12-21
- 33) J.V. Bauer, Stein Hall Manufacturing Company, Composition Adapted for Use as an Adhesive, U.S. Patent 2,212,557, 1940-8-27
- 34) J. J. Schoenberger, Corn Products Company, Corrugating Adhesives and Methods for their Preparation, U.S. Patent 398,061, 1965-9-20 特公昭 48-5253
- 35) J. E. Maryanski and G. C. Lecky, Partially Swelled Starch System as a Homogeneous Corrugating Adhesive, Technical Association of the Pulp and Paper Industry (TAPPI), Vol. 50, No. 8, pp. 57A-60A (1967)
- 36) J. E. Maryanski and G. C. Lecky, Partially Swelled Starch System as a Homogeneous Corrugating Adhesive, Technical Association of the Pulp and Paper Industry (TAPPI) 52nd

Annual Meeting, pp.1-14, New York (1967)

- 37) G. Hurst, Corrugating adhesives past-present-and the future, international Paper Board industry, No. 12, pp.20-28 (1972)
- 38)小役丸孝俊,段ボールシート製造法澱粉接着剤用途におけるトウモロコシ澱粉懸濁の 保温温度と苛性ソータ添加による糊化挙動の影響について、日本包装学会学会誌、Vol. 22, No. 1, pp. 51-65 (2013)
- 39) 小役丸孝俊, 段ボールシート製造用スタイン・ホール型澱粉接着剤(SH型接着剤)とノー キャリヤー型澱粉接着剤(NC型接着剤)の物性について,日本応用糖質学会学会誌, Vol.57, No. 3, pp. 211-217 (2010)
- 40) 日本機械学会, JSME テキストシリーズ 材料力学, 丸善出版, p.23 (2007)
- 41) 木島常明,山川功,新居秀彦,紙の伸縮安定性に及ぼす湿度履歴の影響, No. 33, Vol. 10, pp. 673-678 (1979)
- 42) 日本工業規格, JIS Z 1516, 外装用段ボール
- 43) 遠藤良二, 段ボール工業における技術展望, 紙パ技協誌, Vol. 19, No. 3, pp. 105-117 (1965)
- 44) 中川幸臣,水分の影響を考慮した段ボール緩衝材の包装設計について,日本航海学会 論文集, Vol. 112, pp. 241-246 (2005)
- 45) 斎藤勝彦, 久保雅義, 劉剛, 宅配便における荷扱いの現状分析, 日本航海学会論文集, Vol. 99, pp.117-124 (1998)
- 46) 斎藤勝彦, 久保雅義, 劉義, 宅配便で輸送される荷物が受ける衝撃力の実態, 日本包装 学会誌, Vol. 7, No. 1, pp.23-33 (1998)
- 47) 日本工業規格, ZIS Z 1507 段ボール箱の形式
- 48) 五十嵐清一, 新版段ボール製造・包装技術 実務編, 日報出版 (2002)
- 49) R. C. McKee, J. W. Gender, J. R. Wachuta, Compressive Strength Formula for Corrugated Boxes, Paperboard Packaging, No. 48, Vol. 8, 149-159 (1963)
- 50) K. Q. Kellicutt, E. F. Landt, Basic Design Data for the Use of Fiberboard in Shipping Containers, United States Department of Agriculture Forest Service Forest Products Laboratory, No. D1911 (1952)
- 51) リングクラッシュ値(JIS P 8126 紙及び板紙-圧縮強さ試験方法-リングクラッシュ 法)
- 52) 川端陽一, 段ボール箱の圧縮強さ(1)-Kellicutt 式の新定数提案 日本包装学会誌, Vol. 6, No. 1, pp. 19-23 (1997)
- 53) 川端洋一, 段ボール箱の圧縮強さ(2) 最も簡単な圧縮強度推定式-, 日本包装学会誌,

Vol. 6, No. 1, pp. 24-29 (1997)

- 54) 日本工業規格, JISZ 0200, 包装貨物一性能試験方法一般通則
- 55) 日本工業規格, JIS Z 0212, 包装貨物及び容器-圧縮試験方法
- 56) 日本工業規格, JIS Z 0232 包装貨物-振動試験方法
- 57) 日本工業規格, JIS Z 0202 包装試験 落下試験方法
- 58) 星野茂雄,豊田実,緩衝設計ハンドブック,日本生産性本部,pp.147-346 (1969)
- 59) 大河原駿, 斎藤勝彦, 東山哲, 段ボール箱の静圧縮試験と積重ね荷重試験の等価性, 日本機械学会論文集, Vol. 23, No. 5, pp. 369-372 (2004)
- 60) 中川幸臣, 丹羽一邦, 包装設計の FEM 解析における段ボールのモデル化の検討, 日本 包装学会誌, Vol. 14, No.5, pp. 317-327 (2005)
- 61) 中川幸臣, 丹羽一邦, 斎藤勝彦, 段ボール構造体の落下衝撃シミュレーション, 日本包装学会誌, Vol. 15, No. 6, pp.333-343 (2006)
- 62) 寺田賢二郎, 菊池昇, 計算力学レクチャーシリーズ 1: 均質化入門, 日本計算工学会, 丸 善(2003)
- 63) K. Terada and K. Yuge and N. Kikuchi, Elastro Plastic Analysis of Composite Materials Using the Homogenization Method, 日本機械学会論文集(A 編), Vol. 62, No.601 (1996)
- 64) 高野直樹,座古勝,複合材料の設計と評価の最前線,日本材料学会論文集, Vol.46, No.1,
 pp. 96 (1997)
- 65) 京谷孝史,寺田賢二郎,周期構造を有する梁構造物への均質化法の適用,応用数理学会 論文集, Vol. 1 (1998)
- 66) D. R. Smith, Singullar Perturbation Theory, Cambridge University press (1985)
- 67) A. Benssousan, J. L. Lions and G. Papanicoulau, Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam (1987)
- N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media Kluwer Academic Public (1984)
- 69) J. L. Lions, Some Methods in Mathematical Analysis of Systems and their Control, Beiging, China Science Press (1981)
- 70) I. Babuska, Homogenization Approach in Engineering, Computing Methods in Applied Science and Engineering (R. Glowinski, and J. L. Lions, Eds.), pp.137-153. Lecture Note in Economics and Methematical Systems, Vol. 134, Springer-Verlag, Berlin (1976)
- 71) E. Sanchez Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Note in Physics, Berlin, Springer, No. 127 (1980)
- 72) J. M. Guedes and N. Kikuchi, Preprocessing and Postprocessing for Materials Based on the

Homogenization method with Adaptive Finite Element Methods, Computer Methods in Applied Mechanics and Engineering Vol. 83, pp. 143-198 (1990)

- 73) N. Takano, M. Zako and N. Kikuchi, Stress Analysis of Sandwich Plate by the Homogenization Method, Materials Science Research International, Vol. 1, pp. 82-88 (1995)
- 74) 寺田賢二郎,弓削康平,菊池昇,均質化法を用いた複合材料の弾塑性解析(第1報,定 式化),日本機械学会論文集, Vol.61, Vol.501, pp. 2199-2205 (1995)
- 75) T. Kyoya, K. Terada and T, Kawamoto, Multi-Scale Limit Load Analysis of Discontinuous Rock Mass Based on the Homogenization Method, International Journal for numerical and Analytical Methods in Geomechanics, submitted, Vol. 23, No. 10, pp. 995-1019 (1999)
- 72) 奥村大,大野信忠,小野田孝行,曽田将孝,弾性積層段ボールの圧縮強度に微視構造の
 及ぼす影響の均質化解析,計算理工学論文集, Vol. 12, No. 18, pp. 103-108 (2012)
- 73) 川島義隆,西村太郎, 手塚明, 立体紙製品の構造解析に関する研究, 岐阜県生産技術研 究所研究報告書, No. 2, pp. 29-34 (2000)
- 74) 川島義隆,田中等幸,原田匡人,野口哲司,手塚明,立体紙製品の構造解析に関する研究,岐阜県生産技術研究所研究報告書(第3報), No. 4, pp. 79-82 (2002)
- 76) 川島義隆, 横山貴広, 岩田清三, 野口哲司, 原田匡人, 梅津康義, 松井和己, 手塚明, 立体紙製品の構造解析に関する研究(第4報), No. 5, pp. 41-46 (2003)

<第2章 主な表記>

- **E**^H:均質化された弾性応力-ひずみマトリックス
- **Ê**^H: 面内にのみ周期性を有する構造の均質化された弾性応力--ひずみマトリックス
- **E**^ε:弾性係数-ひずみマトリックス
- L: 巨視的構造体の代表寸法
- *P*(*A_i*):事前確率
- *P*(*A_i*|*B*):事後確率
- P(B):同時周辺確率
- |Y|:ユニットセルの体積
- **b**:物体力
- **b**^H:均質化された物体力
- **d**:観測データ
- ā:観測データの平均
- e:ひずみベクトル
- l: ユニットセルの代表寸法
- *p*(*d*|θ): 尤度
- **t**:表面力
- **u**⁰: 巨視的な変位ベクトル
- **u**¹: 微視的な変位ベクトル
- **u**^ε:微視構造を考慮した変位ベクトル
- x:巨視的な座標系
- **y**:微視的座標系
- $\Theta: 母集団パラメータ<math>\theta$ の全体の集合
- **χ(y)**:特性変位
- ε: ユニットセルの代表寸法とのスケール比
- θ:母集団パラメータ
- *μ*: 平均
- π(θ):事前分布
- $\pi(\theta|d):$ 事後分布
- $\sigma: 標準偏差$
- $\sigma^2: 分散$

σ^{'2}:ベイズ更新された分散

第2章 均質化法とベイズ推定の概要

2.1 はじめに

本章では、段ボールのような複雑な構造物を対象とする数値シミュレーション解析で 用いられる均質化法の概要について述べ、均質化理論の定式化を示す.また、本提案では 段ボールの物性値を逆解析で求める方法を取るが、段ボールが異方性を有する材料である ことから、物性値を同定することの難易度が高いことについて言及する.ベイズ統計学に 対しては、従来の統計的手法である頻度統計学と比較してその特徴やアルゴリズムの相違 点を述べた上で、ベイズ統計学の特徴を述べた上でベイズ推定の特徴が本提案の確率的妥 当性検証に有効であることについて述べる.

2.2 均質化法

本節では、均質化法の理論(2つの空間スケールを用いた漸近展開法による定式化)を述べる.その上で、厚さ方向に周期性のない平板に対して均質化法を適用した場合に生じる 問題点を定式化により示す.

2.2.1 均質化法の定式化

均質化法¹⁻³は, Fig. 2-1 に示すような周期性をともなう微視的構造の一周期をユニットセル(Unit sell)と呼び,このユニットセルの集合体で全体構造を表すことのできる三次元弾性体を対象としている.

Fig. 2-1 Microscopic structure and microscopic structure

全体構造を表すための巨視的な座標系を $x = (x_1, x_2, x_3)$ と表し、巨視的構造体の代表寸法をL, ユニットセルの代表寸法をlとすると、構造体の代表寸法とユニットセルの代表寸法とのス ケール比は次式の関係で表される.

$$\varepsilon = \frac{l}{L} \tag{2.1}$$

周期性を有する微視的構造からなる構造物の変位を次式のように漸近展開する.

$$\boldsymbol{u}^{\varepsilon} \approx \boldsymbol{u}^{0}(\boldsymbol{x}) + \varepsilon \boldsymbol{u}^{1}\left(\boldsymbol{x}, \boldsymbol{y} = \frac{\boldsymbol{x}}{\varepsilon}\right)$$
 (2.2)

ここで、 $y = \frac{x}{\epsilon}$ は微視的座標系、 u^{ϵ} は微視構造を考慮した変位ベクトル、 u^{0} は巨視的な変位 ベクトル、 u^{1} は微視的な変位ベクトルを表す.また、ひずみベクトルeを下記のように定義 する.

$$\boldsymbol{e} = \boldsymbol{\partial}_{\boldsymbol{x}} \boldsymbol{u}^{\boldsymbol{\varepsilon}} \tag{2.3}$$

$$\boldsymbol{\partial}_{\boldsymbol{x}} = \begin{bmatrix} \frac{\partial}{\partial x_1} & 0 & 0 & 0 & \frac{\partial}{\partial x_3} & \frac{\partial}{\partial x_2} \\ 0 & \frac{\partial}{\partial x_2} & 0 & \frac{\partial}{\partial x_3} & 0 & \frac{\partial}{\partial x_1} \\ 0 & 0 & \frac{\partial}{\partial x_3} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_1} & 0 \end{bmatrix}^{\boldsymbol{T}}$$
(2.4)

式(2.2)と式(2.3)より,ひずみeは次式を得る.

$$\boldsymbol{e} \approx \boldsymbol{\partial}_{\boldsymbol{x}} \boldsymbol{u}^0 + \boldsymbol{\partial}_{\boldsymbol{y}} \boldsymbol{u}^1 \tag{2.5}$$

応力-ひずみ関係式は、ひずみeを用いて次式により与える.

$$\boldsymbol{\sigma} = \boldsymbol{E}^{\varepsilon} \boldsymbol{e} \tag{2.6}$$

ここで, **E**^eは弾性係数-ひずみマトリックスである.また,複合材料から構成される構造物の仮想仕事の原理は次式となる.

$$\int_{\Omega} (\delta e)^{T} E^{\varepsilon} e d\Omega = \int_{\Gamma^{t}} (\delta u^{0})^{T} t d\Gamma + \int_{\Omega} (\delta u^{0})^{T} b d\Omega \qquad \forall \delta u^{\varepsilon}$$
(2.7)

ここで, tは表面力, bは物体力を表す. 式(2.7)に式(2.5)を代入すると次式を得る.

$$\int_{\Omega} (\partial x \delta u^{0} + \partial_{y} \delta u^{1}) E^{\varepsilon} (\partial_{x} u^{0} + \partial_{y} u^{1}) d\Omega$$

$$= \int_{\Gamma t} (\delta u^{0})^{T} t d\Gamma + \int_{\Omega} (\delta u^{0})^{T} b d\Omega \quad \forall \delta u^{0}, \delta u^{1}$$
(2.8)

式(2.8)に関し $\epsilon \rightarrow 0$ の極限をとり、平均化原理(averaging principle)⁴⁾を用いると次式のように 式変形できる.

$$\int_{\Omega} \frac{1}{|Y|} \int_{Y} (\partial_{x} \delta \boldsymbol{u}^{0} + \partial_{y} \delta \boldsymbol{u}^{1})^{T} \boldsymbol{E} (\partial_{x} \boldsymbol{u}^{0} + \partial_{y} \boldsymbol{u}^{1}) dY d\Omega$$

$$= \int_{\Gamma t} (\delta \boldsymbol{u}^{0})^{T} \boldsymbol{t} d\Gamma + \int_{\Omega} \frac{1}{|Y|} \int_{Y} (\delta \boldsymbol{u}^{0})^{T} \boldsymbol{b} dY d\Omega$$
(2.9)

ここで, |Y|はユニットセルの体積を表す.式(2.8)より,式(2.10)の微視構造に関する方程式 と式(2.11)の全体構造に関する方程式を得る.

$$\int_{\Omega} \frac{1}{|Y|} \int_{Y} (\boldsymbol{\partial}_{y} \boldsymbol{\delta} \boldsymbol{u}^{1})^{T} \boldsymbol{E} (\boldsymbol{\partial}_{x} \boldsymbol{u}^{0} + \boldsymbol{\partial}_{y} \boldsymbol{u}^{1}) dY d\Omega = 0 \qquad \forall \boldsymbol{\delta} \boldsymbol{u}^{1}$$
(2.10)

$$\int_{\Omega} \frac{1}{|Y|} \int_{Y} (\partial_{x} \delta \boldsymbol{u}^{0})^{T} \boldsymbol{E} (\partial_{x} \boldsymbol{u}_{0} + \partial_{y} \boldsymbol{u}^{1}) dY d\Omega$$

$$= \int_{\Gamma t} (\delta \boldsymbol{u}^{0})^{T} \boldsymbol{t} d\Gamma + \int_{\Omega} \frac{1}{|Y|} \int_{Y} (\delta \boldsymbol{u}^{0})^{T} \boldsymbol{b} dY d\Omega \quad \forall \delta \boldsymbol{u}^{0}$$
(2.11)

次に、微視的な変位を変数分解すると次式を得る.

$$\boldsymbol{u}^{1}(\boldsymbol{x},\boldsymbol{y}) = -\boldsymbol{\chi}(\boldsymbol{y})\boldsymbol{\partial}_{\boldsymbol{x}}\boldsymbol{u}^{0}(\boldsymbol{x}) \tag{2.12}$$

ここで、**χ(y)**は特性変位(characteristic deformation)であり、3 次元問題の場合には6モードとなる.式(2.12)を式(2.10)と式(2.11)に代入して整理すると、微視的な方程式と全体構造の方程式は式(2.13)および式(2.14)となる.

$$\int_{Y} (\boldsymbol{\partial}_{y} \boldsymbol{\delta} \boldsymbol{u}^{1})^{T} \boldsymbol{E} (\boldsymbol{I} - \boldsymbol{\partial}_{y} \boldsymbol{\chi}) dY = 0 \qquad \forall \boldsymbol{\delta} \boldsymbol{u}^{1} \qquad (2.13)$$

$$\int_{\Omega} (\partial_{x} \delta u^{0})^{T} E^{H} (\partial_{x} u^{0}) d\Omega$$

$$= \int_{\Omega} (\delta u^{0})^{T} t d\Gamma + \int_{\Omega} (\delta u^{0})^{T} b^{H} d\Omega \qquad \forall \delta u^{0}$$
(2.14)

ここで, **E**^Hは均質化された弾性応力-ひずみマトリックス, **b**^Hは均質化された物体力であり, それぞれ次式により定義した.

$$\boldsymbol{E}^{H} = \frac{1}{|Y|} \int_{Y} \boldsymbol{E}(\boldsymbol{I} - \boldsymbol{\partial}_{\boldsymbol{\chi}}\boldsymbol{\chi}) \boldsymbol{d}\boldsymbol{Y}$$
(2.15)

$$\boldsymbol{b}^{H} = \frac{1}{|Y|} \int_{Y} \boldsymbol{b} dY \tag{2.16}$$

すなわち,ユニットセルに関して式(2.13)を解くことで特性変位を求め、均質化弾性係数を 式(2.15)により計算し,式(2.14)を解くことで全体構造を評価できる.上式の式(2.13)と式 (2.14)は,FEM などを利用することで容易に解くことが可能である.一方で,微視構造に関 する詳細な応力は次式により得ることができる.

$$\boldsymbol{\sigma} = \boldsymbol{E}^{\varepsilon} \boldsymbol{e} = \boldsymbol{E}^{\varepsilon} \left(\boldsymbol{I} - \boldsymbol{\partial}_{y} \boldsymbol{\chi} \right) (\boldsymbol{\partial}_{x} \boldsymbol{u}^{0})$$
(2.17)

また,式(2.17)に平均化原理を適用することで,均質化された応力(全体構造に関する平均 応力)を次式により求めることができる.

$$\sigma^{H} = \frac{1}{|Y|} \int_{Y} \boldsymbol{E} \left(\boldsymbol{I} - \boldsymbol{\partial}_{y} \boldsymbol{\chi} \right) (\boldsymbol{\partial}_{\chi} \boldsymbol{u}^{0}) dY = \boldsymbol{E}^{H} (\boldsymbol{\partial}_{\chi} \boldsymbol{u}^{0})$$
(2.18)

均質化法では,式(2.17)で微視的な応力を評価する際に,再度,FEMのソルバーを用いる 必要がない.一般的には全体構造物の巨視的な境界条件を粗い要素分割で解き,クリティ カルとなり得る部分に対しては密な要素分割で再分割する.このとき,巨視的モデルで得 られた解を境界条件として,微細構造の境界条件を解くといった方法を取る場合がある. しかしながら,このような方法では,微視的な応力の評価点を変更する度にFEMで境界値 問題を解く必要があるため効率的ではない.加えて,全体構造物と微視構造との寸法比εが 小さくなるほど,解析モデルが大きくなるため,解析結果を得るための計算負荷が高くな るといったデメリットもある.一方で,均質化法では,微視構造のユニットセルに関する 式(2.13)と全体構造に関する式(2.14)が出発点となる.そのため,線形弾性問題では,これら スケールの異なる式を連成して解く必要がないため,2つスケールで一度だけ有限要素法で 解けば良いことになり,式(2.17)と組み合わせることで効率的に複合材料の微視的な応力を 評価することが可能となる.

2.2.2 面内のみ周期的な構造体に対する従来のアプローチ

均質化法は、三次元問題においては、3 方向に周期性を有する場合に限り理論が完備されている⁴⁶⁾. ここでは、解の唯一性が証明できない、完全な周期性のない複合構造に対して均質化法を適用する手法を示す. マクロレベル $x = (x_1, x_2, x_3)$ に対し、面内にのみ周期性が存在する場合、微視構造のユニットセルは次式で定義できる.

$$\hat{y} = (y_1, y_2) = \left(\frac{x_1}{\varepsilon}, \frac{x_2}{\varepsilon}\right)$$
(2.19)

また,面内に限り周期性が存在する場合には上式での定義に限られているため,変位の漸近展開式,およびひずみ式は式(2.20),式(2.21)で表される.

$$\boldsymbol{u}^{\varepsilon} = \boldsymbol{u}^{\varepsilon}(\boldsymbol{x}) = \boldsymbol{u}^{0}(\boldsymbol{x}) + \varepsilon \boldsymbol{u}^{1}(\boldsymbol{x}, \boldsymbol{\hat{y}})$$
(2.20)

$$\boldsymbol{e} = \boldsymbol{\partial}_{\boldsymbol{x}} \boldsymbol{u}^0 + \widehat{\boldsymbol{\partial}}_{\boldsymbol{y}} \boldsymbol{u}^1 \tag{2.21}$$

$$\widehat{\partial}_{y} = \begin{bmatrix} \frac{\partial}{\partial y_{1}} & 0 & 0 & 0 & \frac{\partial}{\partial y_{2}} \\ 0 & \frac{\partial}{\partial y_{2}} & 0 & 0 & 0 & \frac{\partial}{\partial y_{1}} \\ 0 & 0 & 0 & \frac{\partial}{\partial y_{2}} & \frac{\partial}{\partial y_{1}} & 0 \end{bmatrix}$$
(2.22)

以下,前節と同様に定式化する.微視的な変位は,次式のように変数分解できる.

$$\boldsymbol{u}^1 = -\widehat{\boldsymbol{\chi}} \boldsymbol{\partial}_{\boldsymbol{\chi}} \boldsymbol{u}^0 \tag{2.23}$$

$$\bar{\chi} = \begin{bmatrix} \chi^{11} & \chi^{22} & 0 & \chi^{23} & \chi^{31} & \chi^{12} \end{bmatrix}$$
(2.24)

ここで、微視的な方程式は次式となる.

$$\int_{Y} \left(\widehat{\boldsymbol{\partial}}_{y} \delta \boldsymbol{u}^{1} \right)^{T} \boldsymbol{E} \left(\boldsymbol{I} - \widehat{\boldsymbol{\partial}}_{y} \widehat{\boldsymbol{\chi}} \right) dY = 0 \qquad \forall \delta \boldsymbol{u}^{1} \qquad (2.25)$$

また、均質化された弾性応力-ひずみマトリックスは、次式となる.

$$\widehat{E}^{H} = \frac{1}{|Y|} \int_{Y} E\left(I - \widehat{\partial}_{y} \widehat{\chi}\right)$$
(2.26)

この式を板問題に対して実際に解くと、周期性のない厚板方向垂直成分に関する弾性係数 は 0 となり、せん断成分は体積成分にしかならないため、解析結果に誤差が生じる.従っ て、前節で述べた、従来の均質化法と同じアプローチによる定式化は不可能である.

このように、均質化法は 3 方向に周期性を有する構造体を対象とした解析手法であるた め、複両面段ボールや複々両面段ボールといった複層段ボールに対してはその適用が可能 であり、適用事例として奥村ら⁷、川島ら⁸の研究がある.しかしながら、厚さ方向に周期 性のない両面段ボールに対しては均質化法をそのまま適用することはできない.このよう な厚さ方向に周期性のない平板に対する均質化理論の適用は、連続体をモデル化したミク ロスケールの問題に Bernoulli-Eular の仮定などに基づくはりや運動場を導入する方法⁹⁻¹⁰と 4 階の微分方程式に均質化理論を適用する方法¹¹⁻¹²の2つのアプローチがある.前者のアプ ローチでは、はり・薄板を対象として非線形解析が行われている.一方で、後者では、漸 近展開法に基づく定式化がなされている.

2.3 段ボールの弾性係数

均質化法では、ライナと中芯の弾性係数を微視的構造の解析で用いた材料物性値から導出し、さらに均質化弾性係数*E^H*を全体構造の解析から導出している.

均質化弾性係数*E^H*は,微視的構造をともなう構造物を均質な構造物と見なした場合における等価な弾性係数を意味しており,式(2.15)を用いて計算できる.この均質化弾性係数*E^H*を用いることで微視的な構造からなる全体構造物を通常の境界値問題として解析することが可能である.

段ボールは、環境による変化や国内外で使用する段ボールの材質に違いがあることから 弾性係数は、各種の試験より得られる測定値を基に求める必要がある.段ボールの弾性係 数は抄紙方向、垂直方向および厚さ方向の3方向が存在する.単軸方向に圧縮を受ける場 合、中芯およびライナの主要な変形モードは、抄紙方向への曲げである.このことから、 抄紙方向に対する変形モードの妥当性¹³⁾に関して、はりの理論を用いて単軸圧縮を受ける 両面段ボールの荷重と変位関係が解析されており,抄紙方向の弾性係数を用いることで弾 性領域の応答が測定値と非常によく一致することが確かめられている.そのため,段ボー ルの数値解析においては,段ボールを等方性弾性体と見なし,弾性係数の算出に関する計 算式¹⁴から抄紙方向の弾性係数を導き出している.しかし,このようにして得られた弾性 係数は,有限要素法による数値解析や複両面段ボールおよび複々両面段ボールといった積 層段ボールに対して均質化法を適用する場合に有効な弾性係数である一方で,両面段ボー ルに対して均質化法を適用する場合にこのような弾性係数を用いると解析結果と測定値と で合わない.このため,均質化法を両面段ボールに適用する際に計算式から導き出される 段ボールの弾性係数を用いるのではなく,測定値に均質化法の弾性係数を合わせることで 導き出される「調整済み弾性係数」を用いて,解析を可能とする手法を次章で提案する.

2.4 確率的評価のためのベイズ推定法

本節では、本論文で提案する確率的評価で必要となるベイズ統計学について述べる. ベ イズ統計学は統計的手法の一つであるが、従来の標本統計学と異なる点が多い. そこでま す、従来の統計学とベイズ統計学の相違点を比較し、ベイズ統計学が確率的評価において 優れている点を示す. また、ベイズ推定のアルゴリズムとともに必要となるパラメータに ついて解説する.

2.4.1 従来の頻度統計学との相違点

従来の統計学は、ネイマンーピアソン理論(Nayman-Pearson theory)を踏襲した考え方であ り、ネイマンーピアソン理論では確率の本質が事象の頻度にあることから頻度統計学主義 の立場を取り頻度統計学と総称される.また、頻度統計学¹⁵⁾においては科学的根拠を根底 に成立する確率であることから客観説を採用している.一方、頻度統計学と対照の解釈と なるのがベイズ統計学(Bayes statistics)¹⁶⁻¹⁸⁾である.ベイズ統計学とは、ベイズの定理(Bayes theorem)にもとづき母数の推定を行なう統計的手法である.ベイズ統計学では解析者個人の 主観(信念の度合い)に依存する確率であることから主観説(subjective view)を採用している. 解析者がもつ信念の度合いは、主観確率(subjective probability)という形式でベイズの定理に 導入されているが、頻度統計学においては存在しない.

頻度統計学による推定方法では、同一条件よる試行の繰り返しが前提となり、推定を行 なう事象の適用範囲には制約がある.一方で、ベイズ統計学による推定方法では、ベイズ の定理を用いて理論一貫して便利である.このようなことから、ベイズ統計学では頻度統 計学での制約を受けることがないために適用範囲が広い.しかしながら、ベイズ統計学が 発展する背景には、これまでベイズ統計学と頻度統計学における頻度説と主観説との間で 主観説に対する頻度説の立場から科学的根拠にもとづいていないといった批判があり論争 が繰り返されてきた歴史¹⁹⁾をもつが,現在ではベイズ統計学を活用した評価法は多くの現 場で採用されている.

2.4.2 確率の定義

頻度統計学²⁰⁾では、頻度論的解釈を確率の定義としている。頻度論的解釈とは、代数の 法則に従い、試行を無限回繰り返す際の相対頻度の極限を客観確率(objective probability)と するものである²⁰⁻²¹⁾.客観確率は確率がどの程度の信頼性があるのかをデータを元に検証 する.そのため、母数の推定を行う際に多数の標本(sample)の存在を前提するといった制約 のもとで統計処理が成立している.

一方で、ベイズ統計学では主観確率を定義している. 主観確率は事象の発生に対して解 析者がもつ確信あるいは信念の度合い(degree of belief)としての確率を定義する²²⁻²³⁾. 主観 確率の定義においては、事象の発生確率が同じとなる母数の推定を行なっても、解析者に よって推定結果に違いがでることを許容している.また、ベイズ統計学は、ベイズの定理 にもとづいた標本の客観的手続きにより、標本がもつ情報を取り入れ解析者の確信を更新 することで母数の推定を行なう.このような更新はベイズ更新(Bayesian update)と呼ばれる. ベイズ更新に関しては 4.2.2 節にて詳細に述べるが、ベイズ更新はある時点での推定結果を 利用して、その推定結果に最新の観測データを追加することで更新を行うアルゴリズムを もつ.このようにベイズ統計学では、得られた観測データが与えられた全ての情報で逆に 確率を導き出す立場を取るため、逆確率(inverse probability)と呼ばれることもある.

以上に述べた確率の定義に関してベイズ統計学と頻度統計学では異なった解釈を持つた め、観測データの扱い方も異なる.ベイズ統計学では解析者の信念の度合いをベイズ更新 することによって推定を行なうことを基本としており、少数の標本に限定されるような場 合でもベイズ更新を通じて標本を有効に推定に活用することができる.一方で、頻度統計 学では最新のデータを追加して更新するのではなく、全てのデータを用いて再度計算しな ければならないため、多くの観測データを必要とする.そのため、頻度統計学を活用する ために必要な数の観測データを収集することが、ボトルネックとなっている.しかしなが ら、推定精度の向上を図るという点では、標本数が推定結果に寄与するという関係は標本 統計学とベイズ統計学で同じ関係にあり、多数の標本量の必要性に関して否定しているわ けではないが、少数の観測データからでも推定を可能とできることは大きなメリットであ る.

29

2.4.3 事前情報の利用

頻度統計学では,推定を行う際に観測されたデータ以外の情報は認められていない. 一 方ベイズ統計学では,主観確率を定義することでデータ以外の情報を利用することを認め ている.このような,データ以外の情報の利用は観測データが得られる以前,すなわち推 定を行なう事前の段階において解析者が有する知見や経験を事前確率の形式として推定に 反映している.事前確率は解析者の意思決定による主観情報である以上,各解析者の母数 に精通する情報はそれぞれで異なる.そのため,事前確率に対する主観情報を解析者が同 じ様に認識する必要性はないと考えられている²⁴⁾.一方で,事前確率の自由度から解析者 にとって整合性が要求されなければならず,恣意的に事前分布を設定できることが,事前 確率のデメリットとして挙げられている.渡辺²⁵⁾はこの恣意性に関して確率モデルでは, 尤度関数の選択も解析者が行なっていることから尤度関数の選択は客観的と捉え,事前分 布の設定のみが恣意的ではないと述べている.そのため,確率モデルは尤度関数と事前確 率のセットを解析者が選択していると考える方が妥当であるという事前分布の客観性を主 張する立場も存在している,

以上のことから,推定に有益となる事前確率を設定することが可能であれば,前節で示 した少ない観測データから比較的精度の良い推定を行なうことができる.このような事前 分布の利用は頻度統計学にない特徴である.

2.4.4 推定対象母数の扱い

標本統計学およびベイズ統計学で区間推定(interval estimation)は存在する.区間推定とは 区間で幅をもたせて真値を評価する方法であるが,両者で異なった解釈をとり,信頼区間 (confidence interval)²⁰と確信区間(credible interval)²⁷⁻²⁸⁾で区別される.

標本統計学では信頼区間を定義している.信頼区間は母集団のリサンプリングにより得 られた各標本に対して信頼区間を同一の方法で計算することで得られた総区間数の割合が 1-αで母平均を含むか否かの一択と定義される.そのため,標本統計学では推定の対象と なる母集団の真値は1つの定数で評価される.すなわち,母数の真値は未知の値であり, 真値が確率的に変化しないことを意味している.

一方,ベイズ統計学では確信区間を定義している.確信区間は1-αの確率で母数が確信 区間に内在(解析者の確信)すると定義される.この確信区間では,標本統計学に見受け られる同手順のリサンプリングを多回数反復するといった標本抽出を仮定していない.そ のため,ベイズ統計学では未知の値は確率変数とし,観測データは不動であるとして取り 扱われる.

以上より,標本統計学とベイズ統計学では,区間推定に対する解釈の意味合いが異なり,

同一の区間推定結果が得られたとしても,異なる解釈であることに留意する必要がある. また,信頼区間の解釈は複雑であるが,ベイズ統計学における確信区間の解釈は直感的で あることも主観確率を定義する上でのメリットと言える.

2.5 ベイズの定理

ベイズ統計学ではベイズの定理とよばれる確率論で展開されている.本節ではベイズの 定理について各種のパラメータおよびアルゴリズムを踏まえ述べる.

2.5.1 ベイズの定理の導出^{21,29-30)}

2つの事象 $A \ge B$ が存在する.この2つの事象の生起する確率をP(A)およびP(B)とすると、 事象Aが起こる条件の下で事象Bが起こる確率はP(B|A)と表される.この事象P(B|A)は条件 付き確率(conditional probability)と呼ばれる.この条件付き確率を用いて事象Aと事象Bの双 方の事象が同時に起こる結合事象の同時確率(joint probability)は、次式のような関係となる.

$$P(A \cap B) = P(B|A)P(A) \tag{2.27}$$

上式と同様にして,事象Bが起こったという条件の下で事象Aが起こる同時確率は次式のような関係となる.

$$P(A \cap B) = P(A|B)P(B) \tag{2.28}$$

式(2.27)と式(2.28)の関係より,条件付き確率P(A|B)について解くと式(2.29)を得ることができる.

$$P(B|A)P(A) = P(A|B)P(B)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
(2.29)

式(2.29)の分子に関して事象Aを原因,事象Bを結果というような因果関係に置き換えると, 結果Bは原因Aによって生起され,その原因がA₁,A₂,…,A_nとn個あるとすると式(2.27)を用い て次式の関係となる.

$$P(B \cap A_i) = P(B|A_i)P(A_i)$$
 (*i* = 1, 2, ..., *n*) (2.30)
式(2.29)の分母に関して $i \neq i$ のとき、 $\{B_1 \cap A, B_2 \cap A, B_3 \cap A, \dots\}$ は互いに排反し、かつその 和が原因Aであるとすると結果Bが生起する確率は次式の関係となる.

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$
(2.31)

従って、式(2.30)と式(2.31)を用いるとベイズの定理は次式となる.

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$
(2.32)

ここで、 $P(A_i)$ は原因 A_i の事前確率(prior probability)、 $P(B|A_i)$ は原因 A_i が生起した条件下で 結果Bの生起する条件付き確率、P(B)は式(2.31)で表される同時周辺確率(joint marginal probability)、 $P(A_i|B)$ は事後確率(posterior probability)である.この事後確率は結果Bが生起し た条件の下で原因 A_i の生起する確率を意味する.

連続値をベイズの定理で扱うために、原因Aを θ 、結果Bをdと再定義する.この再定義に ともない、事前確率 $P(A_i)$ を $P(\theta_i)$ 、事後確率 $P(A_i|B)$ を $P(\theta_i|d)$ 、同時周辺確率 $P(B|A_i)$ を結果 dの関数として $p(d|\theta_i)$ とすると、式(2.32)のベイズの定理を連続値として取り扱うことので きる式に書き換えることができる.

$$\pi(\theta_i|d) = \frac{p(d|\theta_i)\pi(\theta_i)}{\sum_j p(d|\theta_j)\pi(\theta_j)}$$
(2.33)

さらに、θが連続値であるため、式(2.33)は積分を用いて次式のように表すことができる.

$$\pi(\theta|d) = \frac{p(d|\theta)\pi(\theta)}{\int_{\Theta} p(d|\theta)\pi(\theta)d\theta}$$
(2.34)

ここで、 θ は母集団パラメータ、 θ は母集団パラメータ θ の全体の集合、 $\pi(\theta)$ は事前分布(prior distribution)、 $\pi(\theta|d)$ は事後分布(posterior distribution)であり、これらは確率密度関数 (probability density function, PDF)で表される.

 θ は母集団パラメータ(population parameter), dは観測データ($d_1, d_2, d_3, \dots, d_n$), $p(d|\theta)$ は母 集団パラメータ θ の条件下で観測データdが生起する確率分布(probability distribution), すな わち,観測データdを得たときの母集団パラメータθの尤度(likelihood)である.式(2.34)の分 母に関しては,母集団パラメータθを含まない規格化定数(normalizing constant)である.この 規格化定数の計算は,推定結果に影響を与えることはない.そのため,式(2.34)の分母の積 分を省略して次式の形式で表される.

$$\pi(\theta|d) \propto p(d|\theta)\pi(\theta)$$

(2.35)

式(2.35)のベイズの定理から観測データを用いて更新を繰り返すことで母数の事後分布を求めることができる.

Model Verification and Validation (Model V&V)では、数値解析の妥当性検証にベイズ推定に よるアプローチが示されている.ベイズ推定を用いることで、これまで決定値として扱っ てきた解析に必要なパラメータを定量的に扱うことが可能となる.本研究では、式(2.35)の ベイズの定理を基盤とした確率的評価を行う.

2.5.2 事前分布設定・ベイズ更新

ベイズ統計学では、推定を行なう以前に母集団パラメータ θ に対して解析者が有する情報 を先験情報として事前分布 $\pi(\theta)$ に与える.先験情報が取り得る範囲は、母集団パラメータ θ に対して直接関係する情報に限らず、関連する材料データベースや解析者の経験や知識な どの類似情報までも設定の対象としている.この事前分布 $\pi(\theta)$ が齎すメリットは、汎化性 能を維持した推定が行なえることに加え、母数段パラメータ θ に対して適切な事前分布 $\pi(\theta)$ を設定することができれば、少数の観測データからでもベイズ更新を通じて比較的精度の 高い事後分布を推定できることにある.ベイズ更新は、推定された事後分布を事前分布に 再利用することで更新を行うことをいう.Fig.2-2 にそのアルゴリズムを示す.ベイズ更新 では、観測データを得る度に推定された事後分布を事前分布へ逐次更新が可能であり、更 新を繰り返すことで事前分布の信頼度を向上させることができる.このベイズ更新により 母数パラメータ θ に対して確信度の高い事前分布 $\pi(\theta)$ を与えることができれば、観測データ が少数である場合でも精度良く事後分布を推定することが可能である.

Fig. 2-2 Bayesian updating algorism

2.5.3 尤度

尤度*p*(*d*|*θ*)は,母集団パラメータθが与えられた条件下で観測データ*d*という事象が得ら れる条件付き確率である.尤度*p*(*d*|*θ*)は観測データ*d*を得たときの母集団パラメータθの尤 もらしさを表す.また,尤度の関数は尤度関数³¹と呼ばれ,観測データがどのような確率 分布に従って発生するかを意味している.

n個の観測データ d_1, d_2, \dots, d_n の同時確率分布を母集団パラメータ θ の関数と見做す.その 確率分布を $p(d|\theta)$ とすると、独立性から尤度関数はn個の結合確率密度関数の積により次式 で表される.

$$L(\theta) = p(\theta|d_1) \cdot p(\theta|d) \cdots p(\theta|d_n)$$
(2.36)

2.5.4 確率密度関数 (probability density function)

試行を行った結果の値が,確率的に変化することを確率変数(random variable)と呼び,この確率変数が連続値を取る場合には連続型確率変数(continuous random variable)となる.連続型確率変数Xに対して区間 $a \leq X \leq b$ となる確率が次式で与えられるとき,

$$p(a < x \le b) = \int_{a}^{b} f(x)dx$$
 (2.37)

 $f_x(x)$ はXの確率密度関数であり、次式のような性質をもつ.

$$p(-\infty < X < \infty) = \int_{-\infty}^{\infty} f(x)dx = 1$$
(2.38)

確率密度関数の性質を Fig. 2-3 に示す. 確率密度関数 $f_x(x)$ とは,面積が確率を与えるものであり,連続的な確率変数の分布を表現するのに用いられる.

確率密度関数で表される代表的な分布に正規分布(normal distribution)²⁰⁾がある. 1 変量の 確率変数*X*が正規分布に従うとき確率密度関数は次式で定義される.

$$f_{x}(x) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right\}$$
(2.39)

ここで、 μ は平均(mean)、 σ^2 は分散(variance)、 σ は標準偏差(standard deviation)であり、平均 と分散は次式から求めることができる.

$$E(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \mu$$
(2.40)

$$V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \sigma^2$$
(2.41)

正規分布では、1変量の確率変数Xが平均µ,分散σ²に従うことを次のように表記できる.

$$X \sim N(\mu, \sigma^2) \tag{2.42}$$

 $X \sim N(0,1)$ は標準正規分布(standard normal distribution)と呼ばれる. Fig. 2-4 に正規分布の分散 σ^2 の値による分布形状の変化をまとめて示す. 正規分布の確率密度関数は左右対称の釣鐘 形状をしており, μ は平均値, σ^2 は分散である. 正規分布の形状は分散 σ^2 が大きくなるに伴 い両裾が広がる性質をもつ. 工学分野において正規分布は, 測定の誤差を表す分布として 用いられる他に, 社会現象あるいは自然現象のばらつきを正規分布で仮定できることが多 く, 実用性の高い分布である.

以上のように、ベイズ推定では各パラメータを確率密度分布として取り扱うことができる. そのため、逆解析で問題となる測定値のばらつきを確率密度関数として表現できることになる.

Fig. 2-3 Characteristics of a continuous probability distribution.

Fig. 2-4 Standard normal distribution

2.5.5 事後分布の評価

ベイズ統計学では、事後分布の推定結果を基に確信区間を求める事で母数パラメータの 区間推定を行なうことができる.

ベイズ統計学における100(1 – α)%確信区間とは、母集団パラメータ θ の事後分布 $\pi(\theta|d)$ が次式の関係を満たす区間である.

$$\pi(a \le \theta \le b|d) = \int_{a}^{b} \pi(\theta|d)d\theta = 1 - \alpha$$
(2.43)

Fig. 2-5 に100×(1-k)%確信区間が取る範囲を示す. 100×(1-k)%確信区間では,事後 分布の両袖から100× $\alpha/2$ %の区間を除外した下確信区間限界(lower confidence limit)と上確 信区間限界(upper confidence limit)に内に含まれる区間を確信区間と定義している³²⁾. つまり, 確信区間では母数パラメータ θ がこの区間に含まれる確率を意味すると解釈することがで きる.また,確信区間は,標本統計学の信頼区間とは異なる解釈であるが,多数量の観測 データdを用いて推定を行なった場合には,確信区間と信頼区間とで数値的に一致する性質 をもつ.しかしながら,標本統計学とベイズ統計学では,2.1.2 節で述べたように両者間の 確率で定義の相違があり,標本統計学では Confidence interval,ベイズ統計学では Credible interval のように意図的に区別した用語を用いることにしている.一方で,文献²⁸によって は"Bayesian confidence interval"のようにベイズ統計学の区間推定であり標本統計学の定義 とは異なることを明記した上で Confidence interval という用語を用いる事例も存在している. 繁桝³³は信頼区間を Credibility interval と語訳しているが,標本統計学の Confidence interval と区別すべきであると考えられる.そのため,本論文ではベイズ統計学における区 間推定を確信区間(Credible interval)の表記を用いる.

このように 95%確信区間は,下確信区間限界と上確信区間限界に含まれる区間に真値が あることを示している.本研究では,下確信区間限界と上確信区間限界の値をそれぞれ数 値解析に用いる.すなわち,下確信区間限界と上確信区間限界の値を数値解析に用いるこ とで解析結果の妥当性を保証できる下限値と上限値を明示的に示すことができる.このこ とにより,従来,数値解析と測定値を比較するに留まっていた数値解析の妥当性検証を定 量的に評価することが可能となる.

Fig. 2-5 $100 \times (1 - k)$ % Credible interval

2.5.6 自然共役事前分布

尤度の自然共役事前分布(conjugate prior distribution)³⁴⁻³⁵⁾とは、尤度関数の形に応じて事前 分布 $p(\theta)$ と事後分布 $p(\theta|d)$ が同じ分布族となるように事前分布を採択する方法である.すな わち、事前分布 $\pi(\theta)$ に正規分布を仮定した場合には、事後分布 $\pi(\theta|d)$ も同様に正規分布と なる.このように共役事前分布の利用により事前分布 $\pi(\theta)$ と事後分布が同じ分布族になる ことで計算負荷の低減となる.

共役事前分布の例として正規分布を取り上げる. サンプル $z = (d_1, d_2, \cdots, d_n)$ を得たときの 尤度 $p(d|\theta)$ は次式となる.

$$p(z|\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(d_i - \theta)^2}{2\sigma^2}\right\}$$
$$= \exp\left\{-\frac{(\bar{d} - \theta)^2}{2\sigma^2/n}\right\} \cdot \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^n \exp\left\{-\frac{\Sigma(d_i - \bar{d})^2}{2\sigma^2}\right\}$$
(2.44)

上式より, *ā*を観測データの平均とすれば, 母集団パラメータのの関数は第1因数だけとなり, これが母数パラメータに対する情報として寄与する. 第2因数は定数であり, ベイズの定理おける分母, 分子から排除できる. すなわち, 平均*ā*は母集団パラメータのに対する 十分統計量であり, 式(2.45)を用いて次式となる.

$$\pi(\theta|z) \propto \pi(\theta) \cdot \exp\left\{-\frac{\left(\bar{d}-\theta\right)^2}{2\sigma^2/n}\right\}$$
(2.45)

ここで、母集団パラメータ θ の事前分布 $\pi(\theta)$ に関して、式(2.45)の関数形に着目すれば正規 分布 $N(\mu, \sigma^2)$ が適当である.従って、事前分布 $\pi(\theta)$ は正規分布で次式により表すことがで きる.

$$\pi(\theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(\theta-\mu)^2}{2\sigma^2}\right\}$$
(2.46)

式(2.46)を式(2.45)に代入すれば、事後分布は再び正規分布N(µ', σ'²)の次式となる.

$$\pi(\theta|z) \propto \exp\left\{-\frac{(\theta-\mu')^2}{2\sigma'^2}\right\}$$
(2.47)

ここで、 $\mu' \ge \sigma'^2$ は μ および σ^2 が観測データdによりベイズ更新された平均 μ' 、分散 σ'^2 で次式 により表される.

$$\mu' = \frac{\left(\frac{1}{\sigma^2}\right)\mu + \left(\frac{n}{\sigma^2}\right)\bar{x}}{\frac{1}{\sigma^2} + \frac{n}{\sigma^2}}$$
(2.48)

$$\frac{1}{\sigma'^2} = \frac{1}{\sigma^2} + \frac{n}{\sigma^2}$$
(2.49)

また,式(2.49)で表される分散の逆数は,精度(accuracy)と呼ばれる.この精度の増加によっ て分散が小さくなることは,推定結果の信頼性が高いことを意味する.また,平均μ'は分散 の逆数の比で内分された点へ移る.このように,尤度に正規分布を仮定すれば,事後分布 も正規分布となることが証明される.

自然共役事前分布は,確率分布の全てに適応可能ではなく,Table. 2-1 に示す尤度に対す る自然共役事前分布が一通り決まっている.Bernord ら³⁶⁾は基本的な母集団分布に対する自 然共役事前分布とそれに対する事後分布評価式の有用な一覧を示している.このように, ベイズ推定では,共役事前分布を用いることで,計算コストの低減を可能とする.しかし ながら、すべての事象に対して共役事前分布を仮定することは現実的に不可能である.従って、共役事前分布を用いることができない、すなわち、分布形状が複雑となる場合には、 事後分布π(θ|d)を求めるための計算に事前分布π(θ)と尤度関数p(d|θ)の積分を含んでいる ため、後述するモンテカルロシミュレーションを活用する必要がある.

Likelihood	Prior distribution Posterior distribution	
Bernoulli distribution	Beta distribution Bata distribution	
Binomial distribution	Beta distribution Bata distribution	
Poisson distribution	Gamma distribution Gamma distribution	
Mean of normal distribution	Normal distribution Normal distribution	
Variance of normal distribution	Inverse gamma distribution	Inverse gamma distribution

Table. 2-1 Representative conjugate prior distributions

2.5.7 無情報事前分布

母集団パラメータθに対して解析者の有用な情報がなく,根拠のない事前分布の設定となる場合には無情報事前分布(non information prior)が活用される.無情報事前分布とは,事後分布に対する事前分布の影響が限りなく小さくなる分布のことを示す.このような無情報事前分布の設定は,母集団パラメータθに関して有益な先験情報を解析者が所有しない立場を意味している.

無情報事前分布の性質としては,事後分布に対する影響が限りなく小さくなることから 標本統計学における最尤推定の結果と一致する共通性をもつ.事後分布の推定に対して無 情報事前分布がもつ役割に違いはないが,同一の無情報事前分布であっても異なる定義の 方法が存在する.以下に代表的な無情報事前分布の定義を示す.

(1) 一様分布(uniform distribution)

ー様分布は局所的に同一の確率となるような分布であり,確率密度は以下のように与えられる.

$$f(x) = \frac{1}{b-a}$$
 (a \le x \le b) (2.50)

式(2.50)を事前分布π(θ)に割り当てると、次式のように書き換えることができる.

$$\pi(\theta) = \frac{1}{b-a} \quad (a \le x \le b) \tag{2.51}$$

式(2.51)は, 事前分布がaとbの区間内一様であることを表している. Fig. 2-6 に一様分布が 取る範囲を示す. Fig. 2-6 に示されるように,式(2.51)の事前分布は閉区間[a,b]の間におけ るすべての値に対して一様となる確率であることを意味している.

Fig. 2-6 Uniform distribution

(2) 非正則な分布(improper distribution)

母数パラメータ θ が正規分布 $N(\theta,\sigma^2)$ に従うことを考える.事前分布 $\pi(\theta)$ として正規分布 $N(\mu_0,\sigma_0^2)$ を仮定すると、母数パラメータ θ に対して解析者の先験的な情報がないとき事前分 布 $\pi(\theta)$ の分散 σ_0^2 を無限に大きくとる.これを次式に示すベイズの定理で表すと次式となる.

$$\pi(\theta|d) \propto \pi(\theta) \cdot \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(d-\theta)^2}{2\sigma^2}\right\} \qquad (-\infty < \theta < \infty)$$
(2.52)

すべての母数パラメータ θ に関して同一の重みを仮定し,事前分布を $\pi(\theta) \equiv c(> 0)$ と定義することで,母数パラメータ θ に対して情報がないことを意味する.実際には,関数 $\pi(\theta) \equiv c$ を積分すると

$$\int_{-\infty}^{\infty} \pi(\theta) d\theta = \infty$$
(2.53)

となり積分値が無限大に発散する.これは全事象の確率の総和が1となるコルモゴロフの公理(Kolmogorov axioms)³⁷⁾に反しており,確率密度関数として扱うことができない.このよう に積分値が無限大に発散するような分布を非正則分布と総称している. Fig. 2-7 に非正則分 布を示す.非正則分布は一様分布のように,ある区間内で確率が一様となるわけではなく, 特定の区間をもたない無情報事前分布である.

例えば、正規分布 $N(\theta, \sigma^2)$ から大きさnの観測データ (d_1, d_2, \cdots, d_n) における平均 \bar{d} ならば、 母平均 θ の事後分布として、平均 μ 、分散 σ は次式により表すことができる.

$$\mu = \frac{(n/\sigma^2)\bar{d} + (1/\sigma_0^2)\mu_0}{(n/\sigma^2) + (1/\sigma^2)}$$
(2.54)

$$\sigma = \frac{1}{(n/\sigma^2) + (1/\sigma_0^2)}$$
(2.55)

ここで母数パラメータ θ に関する解析者の先験情報がない場合は, $\sigma_0^2 \rightarrow \infty$ の極限をとることに相当する. つまり,事前分布 $\pi(\theta)$ を次式の非正則分布で表すと

$$(\theta) \equiv c > 0 \ (-\hat{z}) \tag{2.56}$$

式(2.56)の関係から事後分布は次式となる.

$$\pi(\mu|x) = \frac{\sqrt{n}}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(\theta - \bar{x})^2}{2(\sigma^2/n)}\right\} \qquad (-\infty < \theta < \infty)$$
(2.57)

上式より, 平均 \bar{d} , 分散 σ^2/n であるということがわかる. これは標本平均 \bar{d} と標本平均 σ^2/n を 含んでいる. すなわち事前分布に非正則事前分布を設定すると解析者の事前の情報が加味 されず, 観測データのみに依存した事後分布が得られることになる.

Fig. 2-7 Improper distribution

2.6 おわりに

本章では、複雑な構造物を対象とする数値シミュレーション解析で用いられる均質化法の概要について述べ、さらに両面段ボールにおいてはその形状から物性値を同定することの難易度が高いことについて言及した.

ベイズ統計学に対しては、従来の統計的手法である頻度統計学と比較してその特徴やアル ゴリズムの相違点を述べた上で、事前分布の利用により少ない観測データで精度の良い推 定が可能であること、全てのパラメータを確率密度分布で表せることが、本論文で提案す る妥当性検証に有効であることを述べた.

【第2章 参考文献】

- 1) 寺田賢二郎, 菊池昇, 計算力学レクチャーズシリーズ 1: 均質化入門, 丸善出版 (2003)
- 2) 高野直樹, 均質化法による新しい数値シミュレーション, 日本複合材料学会誌, Vol. 27, No. 1, pp. 4-11 (2001)
- J. M. Guides and N. Kikuchi, Preprocessing and Postprocessing for Materials Based on the Homogenization Method with Finite Element Methods, Computer Methods in Applied Mechanics and Engineering, Vol. 83, Issue 2, pp. 143-198 (1990)
- 4) E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory (Lecture Notes in Physics), Springer Berlin, No. 127 (1980)
- 5) A. Benssoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Elsevier (1978)
- J. L. Lions, Some Methods in the Mathematical Analysis of Systems and their Control, Science Press, Beijing (1981)
- 7) 奥村大,大野信忠,小野田孝行,曽我将孝,弾性積層段ボールの圧縮強度に微視構造の及 ぼす影響の均質化解析,計算数理工学論文集, Vol. 12, No. 18-121212 (2012)
- 8) 川島義隆, 西村太子, 手塚明, 立体紙製品の構造解析に関する研究, 産業技術研究所報告 書, pp. 29-34 (2000)
- 9) 高野直樹,座古勝,菊池昇,均質化法による単層波状コアサンドイッチ板の解析,日本複合材料学会誌, Vol. 7, No. 1, pp. 4-11 (1995)
- 10) 岡田祐,藤谷修太津,福井泰好,熊澤典良,はり・棒や薄板構造の均質化法解析,計算工
 学講演会論文集, Vol. 5, No. 2, pp. 741-744 (2000)
- R. V. Kohn and M. Vogelius, A New Model for Thin Plates with Rapidly Varying Thickness, Internal Journal of Solids and Structures, Vol. 20, No. 4, pp. 333-350 (1984)
- 12) 京谷孝史,寺田賢二郎,周期構造を有する梁構造物への均質化法の適用,土木学会応用 力論文集, Vol. 1, pp. 185-194 (1998)
- A. Krusper, P. Isaksson and P. Gradin, Modeling of Out-of-Plane Compression Loading of Corrugated Paper Board Structures, Journal of Engineering Mechanics, Vol. 133, No. 11, pp. 1171-1177 (2007).
- 14) Z. W. Wang and E. Y. Ping, Energy absorption properties of multi-layered corrugated paperboard in various ambient humidities, Materials and Design, Vol. 32, pp. 3476-3485 (2011)
- 15) 東京大学教養学部統計学教室 編,統計学入門(基礎統計学I),東京大学出版会 (1991)
- 16) T. Bayes, LII. An Essay Towards Solving a Problem in the Doctrine of Chances, Philosophical Transactions of the Royal Society of London, Vol. 53, pp. 370-418 (1763)

- 17) 松原望, ベイズ統計学概説, 培風館 (2010)
- 18) M. B. Christopher, Pattern Recognition and Machine Learning, Springer, pp. 137-156 (2006)
- C. Howson and P. Urbach, Scientific Reasoning: The Bayesian approach, Lasalle. IL: Open Court (1989)
- 20) 東京大学教養学部統計学教室 編,自然科学の統計学(基礎統計学),東京大学出版会 (1992)
- 21) A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari and D. B. Rubin, Bayesian Data Analysis :Third Edition, Chapman and Hall (2013)
- 22) S. L. Lauritzen and D. J. Spiegelhalter, Local Computations with Probabilities on Graphical Structures and Their Applications to Expert Systems, Journal of the Royal Statistical Society: Series B, Vol. 50, No. 2, pp. 157-224 (1988)
- J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann Publishers Inc (1988)
- 24) 松原望, ベイズ統計学概説, 培風館, p. 57 (2010)
- 25) 渡辺澄夫, ベイズ統計の理論と方法, コロナ社 (2012)
- 26) 北村隆一, 尾崎博明, 東野達, 中北英一, 堀智晴, 工学のための確率・統計, 朝倉書店, p. 154 (2006)
- 27) 渡辺洋, ベイズ統計学入門, 福村出版, p. 14 (1999)
- 28) B. P Carlin and T. A. Louis, Bayesian and Empirical Bayes Methods for Data Analysis Second Edition, Chapman & Hall/CRC, p. 17 (2000)
- 29) 松原望, ベイズ統計学概説, 培風館, pp. 61-65 (2010)
- 30) 市川昌弘, 構造信頼性, 裳華房, p. 8 (1990)
- R. A. Fisher, On the Mathematical Foundations of Theoretical Statistics, Philosophical Transaction of the Royal Society, pp. 309-368 (1922)
- 32) 渡辺洋, ベイズ統計学入門, 福村出版 (1999)
- 33) 繁桝算男, ベイズ統計入門, 東京大学出版会 (1985)
- 34) 松原望, 入門ベイズ統計学, 東京出版 (2008)
- 35) 貝瀬徹, 設計過程の事前情報を用いた離散分布に基づくベイズ信頼性解析, 人文論集,
 Vol. 39, No. 3, pp. 171-179 (2004)
- 36) J. M. Bernardo and A. F. M. Smith, Bayesian Theory, John Wiley & Sons Ltd (2000)
- 37) 北村隆一,尾崎博明,東野達,中北英一,堀智晴,工学のための確率・統計,朝倉書店,pp.
 20-24 (2006)

<第3章 主な表記>

- A:試験片の面積
- Dx:段ボールシートの抄紙方向の曲げ強さ
- D_v:段ボールシートの垂直方向の曲げ強さ
- *F*: せん断力
- I:単位当たりの断面二次モーメント
- *J*: 箱常数
- M:単位幅当たりの曲げモーメント
- M₀: ライナの接続部に働く作用力すなわち単位幅当たりに働く固定モーメント
- **N**:着目点の軸力
- **P**:荷重
- PcD: 垂直方向の荷重
- Pc:ショートスパン法による試験片の平均最大応力
- Pn: 垂直圧縮強さにおける最大荷重
- P_{MD}: 抄紙方向の荷重
- P_p: 平面圧縮試験における最大荷重
- S:原点Oから中芯の厚さの中央位置yoに沿っての距離
- T: 両面段ボールの厚さ
- U:弾性エネルギー
- *W*:坪量
- Z:段ボール箱の周辺長
- *a_{x2}:フルート常数*
- f: ライナの繊維方向による異方性係数
- *f*: 中芯の繊維方向による異方性係数
- *h_F*:段の高さ
- l:試験片の長さ
- *l*_{CM}:中芯の長さ
- \bar{l}_{CM} :形成前の中芯の長さ
- *l*_L: ライナの長さ
- *l*_w:試験片の初期幅
- *r*:段操率

s:紙厚

- t:中芯の厚さ中心点(x, y₀)から厚さ方向の距離
- t_{CM}:中芯の厚さ
- t_{BL}:裏ライナの厚さ
- t_{TL}: 表ライナの厚さ
- WBL: 裏ライナの坪量
- w_{CM}:中芯の坪量
- *w_{TL}*:表ライナの坪量
- x:抄紙方向の基準位置 O からの距離
- y:中立面から着目位置までの距離
- y₀:段の厚さの中央位置
- β:段ボールの含水分
- β₀:乾燥前の試験片の質量
- β₁:乾燥後の試験片の質量
- δ_{CD} : 垂直方向変位
- ε: ひずみ
- *θ*:なす角
- **σ**: 平板の曲げ応力
- $\sigma_h: 破裂強さ$
- σ'_b :比破裂強さ
- $\bar{\sigma}_b$:合計破裂強さ
- *σ_{bBL}*: 裏ライナの破裂強さ
- **σ**_{bCM}:中芯の破裂強さ
- σ_{bTL} :表ライナの破裂強さ
- **σ**_{CD}: 中芯の曲げ応力
- σ_c^{CD} : 段ボール原紙における垂直方向の圧縮強さ
- σ_s^{CD} : 段ボール原紙における垂直方向の引張強さ
- σ_{ts}^{CD} : 段ボール原紙における垂直方向の引裂き強さ
- σ_s^{CDL}: ライナにおける垂直方向の引張応力
- σ_s^{CDM}:中芯における垂直方向の引張応力
- σ_{IT}: ライナの繊維が等方に配向した際の引張応力
- ōit:中芯の繊維が等方に配列した際の引張応力
- σ_k : Kellicutt 式による圧縮強度

σ_n:垂直圧縮強さ

σ_{max}:平板の曲げの最大応力

 σ_{mc} : Mckee 式による圧縮強さ

- σ_c^{MD} :段ボール原紙における抄氏方向の圧縮強さ
- σ_s^{MD}:段ボール原紙における抄氏方向の引張強さ
- σ_{ts}^{MD} : 段ボール原紙における抄氏方向の引裂き強さ
- σ_t^{MDL} : ライナにおける抄氏方向の引張応力
- σ_t^{MDM}:中芯における抄紙方向の引張応力
- σ_{θ}^{MDL} : ライナの引張方向と抄紙方向とのなす角 θ における引張応力
- σ_{θ}^{MDM} :中芯の引張方向と抄紙方向とのなす角 θ における引張応力
- *σ_r*:リングクラッシュ圧縮強さ
- $\bar{\sigma}_r$:総合リンククラッシュ値
- σ': 比リングクラッシュ圧縮強さ
- σ': ショートスパン法による比圧縮強さ
- σ_{rt}:リングクラッシュ試験による試験片の圧縮強さ
- *σ*_{rTL}: 表ライナのリングクラッシュ圧縮強さ
- **σ**_{rBL}: 裏ライナのリングクラッシュ圧縮強さ
- $\sigma_{c}^{b}: ショートスパン法による圧縮強さ$
- *σ_n*: 平面圧縮強さ

第3章 段ボール構造の性質と問題設定

3.1 はじめに

本章では、本論文における研究の実用例に挙げた段ボールについてその構造や性質およ び設計法の概要を述べた上で、設計の問題点について既存の研究を中心にレビューし、数 値シミュレーション解析の必要性を述べる.さらに、数値シミュレーション解析に関する 既存の研究結果を示し、段ボールの数値シミュレーション解析が難易度の高い問題であり、 本論文の提案手法を用いて解くことが工学的にも有用であることを示す.

3.2 段ボール原紙

段ボールの基本的構造は、複数の段ボール原紙を組み合わせることで構成されている. 本節では、段ボール原紙の種類やその特徴および工学的性質について述べる.

3.2.1 段ボール原紙の種類・特徴

段ボール原紙(containerboard)は、段ボールを製造するために用いる板紙であり、フラット に使用される段ボール用ライナ(Linerboards)(以下、ライナ)¹⁾と波形状に形成することで用 いられる段ボール用中芯原紙 (Corrugating medium)(以下、中芯)²⁾の2種類に分別される.段 ボール原紙の基本的な原料は、木材や古紙から抽出されたパルプ(pulp)が利用されており、 その主成分は、セルロース繊維である.段ボール原紙の原料となるパルプは、木材を原料 としたバージンパルプと古紙を原料としたリサイクルパルプに大別³⁾することができる.バ ージンパルプの製造法は、マツ等の針葉樹やユーカリ・アカシア等の広葉樹の木材片を水 酸化ナトリウムや硫化ナトリウムを用いて圧力・熱をかけて抽出する.一方、リサイクル パルプは、古紙を各繊維にほぐす解繊技術とインキやその他の異物を除去する技術が基本 となる⁴⁾.具体的には、新聞、雑誌、段ボール、飲料用紙パックなどの古紙を水とともに撹 拌して繊維状にし、比重の差や形状の違いを利用して砂、金属、プラスチックなどの異物 を除去する工程を経て、界面活性剤を用いてインキを浮かせて取り除いたものである³⁴⁾.

段ボール原紙を製造する際に必要となるリサイクルパルプは,主に古紙段ボールが使用 される.これは、本国における段ボールのリサイクル率が 90%以上の高水準にあるためで ある.リサイクルパルプの性質は、リサイクル過程を繰り返すことで、平均繊維長が短く なることや繊維間結合の能力低下を起こす.加えて、繊維以外の無機物成分の含有量も多 くなる.このようなことから、リサイクルパルプを繰り返し使用したことによる品質の劣 化は、段ボール原紙の強度低下を齎す要因⁴となる.そのため、段ボール原紙の強度を向上 させる目的として、無機物成分が少なく、繊維間結合能力が高いバージンパルプをリサイ クルパルプに配合している.リサイクルパルプとバージンパルプの配合による段ボール原 紙の強度は、坪量W(g/m²)によるグレードで分類されている.坪量とは、1 平方メートル あたりの用紙の重さを表す単位である.ライナのグレードは、 C ライナと K ライナに分類 される. K ライナはバージンパルプの含有量が C ライナに比べ多いため、強度は高くなる 傾向にある.一方で、中芯の多くは半化学パルプ(semichemical pulp)⁵が利用される.

段ボール原紙の繊維の配向性を、Fig. 3-1 に示す. Fig. 3-1 より、繊維方向は抄紙機や製造過程の抄紙条件により差が生じるが、概ね抄紙される方向に沿うように配列している⁶. 段ボール原紙では、この繊維方向により目方向が決定される. Fig. 3-1 に繊維方向による段ボール原紙の目方向を示しているが、繊維の配列が一方向に沿って抄紙される方向を抄紙方向(Machine direction, MD)、抄紙方向に対して垂直な方向は垂直方向(Cross direction, CD)と表される. また、抄紙方向と垂直方向で段ボール原紙が持つ力学的特性においても相違がある. 段ボール原紙の力学的特性は、引張強さ σ_s 、圧縮強さ σ_c 、引裂き強さ σ_{ts} で下記のような関係となる.

$$\sigma_{\rm s}^{\rm MD} > \sigma_{\rm s}^{\rm CD} \tag{3.1}$$

$$\sigma_c^{MD} > \sigma_c^{CD} \tag{3.2}$$

$$\sigma_{ts}^{MD} < \sigma_{ts}^{CD} \tag{3.3}$$

ここで、上添え字は段ボールの目方向を示している.また、伸縮性は、抄紙方向より垂直 方向の方が大きくなる傾向にある.これらの関係は、後述する破裂強さ試験において、段 ボール原紙の破壊状態が Fig. 3-2 に示される H型となることから繊維配向性に起因すると考 えられている^の.すなわち、段ボール原紙は、これまでに述べた繊維の配向性により抄紙方 向と垂直方向で機械的特性が異なる異方性材料⁷として取り扱う必要がある.

Fig. 3-1 Fiber directions of containerboard⁶⁾

Fig. 3-2 Section of containerboard by bursting strength test⁶

3.2.2 環境変化が及ぼす段ボール原紙の強度へ与える影響

段ボール原紙の強度に関して,使用するパルプの種類や古紙の配合量を除けば,繊維が もつ強度および繊維間の結合が要因で決定されることは前節で述べた.加えて,段ボール 原紙は紙材料に分類されることから,湿度や温度といった環境の変化に起因して紙の繊維 が膨張と伸縮を起こすことが,段ボール原紙の強度に影響を与えている.特に相対湿度は 段ボール原紙の強度に影響を与える大きな要因である.そのメカニズムは,吸湿や脱湿に よる重量変化と同時に繊維が膨張および収縮という形態変化⁸⁻¹⁰⁾を伴うためである.このよ うな,環境変化によって齎される紙の性質は,乾燥時に生じる収縮の少ない紙材料ほど湿 度安定性¹¹⁾は高い.また,湿度変化を繰り返した場合には,同一湿度の環境下で必ずしも 同一寸法にはならず,垂直方向に対しては,伸縮性が若干低下することが知られている¹²⁾.

3.2.3 段ボール原紙の強度¹³⁾

段ボール原紙は紙の一種であり、紙を非常に薄い平板であるとすると、弾性変形領域内での平板の曲げ理論¹⁴⁾を適用できる.平板の曲げ応力σは、はりの曲げと同様に次式で表される.

$$\sigma = \left(\frac{M}{I}\right)y\tag{3.4}$$

ここで,yは中立面から着目位置までの距離,Mは単位幅当たりの曲げモーメント,Iは単位 幅当たりの断面二次モーメントである.さらに,断面二次モーメントIは紙厚sを用いて次式 で表される.

$$I = \int_{-s/2}^{s/2} y^2 dy = \frac{s^3}{12}$$
(3.5)

式(3.4)の曲げ応力 σ は、曲げ変形を受けることで材料内部に生じる応力を示す式である.式(3.4)の応力式より、中立面からの距離 $y = \pm s/2$ の位置で曲げの最大応力 σ_{max} が紙の表面に 生じ、且つ、紙厚sの2乗に反比例すると考えられている¹³⁾.また、曲げ強度を表す一つの 規準値は、曲げの最大応力 σ_{max} の逆数($1/\sigma_{max}$)で表すことができる.このようなことから、 非常に薄い紙の平板では、曲げ変形に対する抵抗力も小さいが、段ボール原紙のように紙 が積層となった厚紙となれば、曲げに対する強度が増加すると言える.従って、段ボール 原紙の強度は、式(3.4)の曲げ理論に従うことで議論できるとされている.また、段ボール原 紙は、強いパルプやセミケミカルパルプによる薄い紙が積層となって成形されるために、 上下の薄い紙相互の表面接触から生じる繊維の絡み合いが、段ボール原紙の強度をより高 めるといった効果を齎す要因と考えられている¹⁴⁾.

3.3 段ボール

段ボールは、安定に優れた力学的性質を持つ構造から成り立っている.ここでは、段ボ ールの構成、段ボールに関する各種の算出式および段ボールの強度に関するメカニズムに ついて述べる.

3.3.1 段ボールの構造と性質

3.2.3 節において紙は非常に薄い平板のものであり、式(3.4)の曲げ理論を用いて議論でき

ることは既に述べた.従って,紙の曲げ強度は最大応力*σ_{max}*に反比例することから,紙厚*s*を 大きく取ることで,紙の曲げ剛性を向上させることが可能である.そのための一つの手段 として,紙の坪量を増やすことにより,単位応力の低下を図ることができる.しかしなが ら,単に,紙の坪量を増やしたことで,極端な厚みをもったものを紙として定義するとは 言い難い.このような点において,段ボールは見かけ上,厚みのある構造をしているが, 紙を極端に厚くすることなく単位応力を低下させることが可能である.

段ボール^{6, 15-16}は, Fig. 3-3 に示すようにライナと中芯から構成され,中芯の片側または 両面に表ライナ(top liner)・裏ライナ(bottom liner)を貼合させた構造体である.中芯と表ライ ナ・裏ライナとの接着は,主に澱粉を用いた貼合用接着剤(adhesive for corrugated fibreboard) が使用される.このように,段ボールの定義はライナと中芯の両部材によって成り立って いることから,単一材料としてライナおよび中芯を用いたとしても段ボールとして取り扱 うことはできない.

段ボールの種類は、表ライナと中芯で構成される片面段ボール、両面段ボール、片面段 ボールと両面段ボールを組み合わせた複々両面段ボールなどがある. Fig. 3-3 に示した両面 段ボールは、最も一般的な構造の段ボールである. また、JIS では、単層構造から成る両面 段ボールおよび積層構造から成る複両面段ボールが規定¹⁵されている.

Fig. 3-3 Structure and members of single corrugated cardboard

段ボールは,段ボールの厚さと単位長さ当たりの中芯の繰り返し数による段(flute)¹⁵⁾によって分類^のされている.段ボールの厚さTは,段の高さおよび使用する段ボール原紙の厚さの和で次式によって表される.

$$T = t_{TL} + t_{CM} + h + t_{BL} - \lambda$$

(3.6)

ここで、 t_{TL} は表ライナの厚さ、 t_{BL} は裏ライナの厚さ、 t_{CM} は中芯の厚さ、 h_F は段の高さ、 λ は製造工程で潰された損失厚さである.実際の段ボールの厚みは、式(3.6)で求められた段ボールの厚みTを求める理論上の値より若干小さくなる傾向にあることが知られている⁶.

段ボールを構成する中芯については、フルートとしていくつかに分類されている. Table. 3-1 にフルートの種類をまとめる.フルートの種類は、段の高さと単位長さ当たりの中芯の 繰り返し数¹⁵⁾の違いにより分類⁶されている.繰り返し数は、中芯が有する波形の単位長さ 当たりに繰り返される数の指標を示す段操率r(take up factor)として表される.段操率は、波 形状に形成前の中芯の長さ \overline{l}_{CM} 、ライナの長さ l_L を用いて次式から求められる.

$$r = \frac{l_L}{\bar{l}_{CM}} \tag{3.7}$$

国内では A フルート, B フルート, C フルートに関して, JIS によって規格化されており, A フルートおよび B フルートの利用は国内では主流となっている.このように,フルート は,段の高さ*h_F*と単位長さ当たりの繰り返し数によって強度が異なる性質を持つ.Table.2-1 より,A フルートはフルートの高さが最も高く単位長当たりの段数が最も少ない構造であ るため,緩衝性や垂直圧縮強さに優れている.一方,Bフルートは単位長当たりの段数が最 も多く,段の高さも低いため平面圧縮強度が強い.

また,段ボールには,段以外の分類として坪量(basis weight)がある.坪量は単位面積当たりの段ボールの質量Wであり,下記の式から算出できる.

$$W = w_{TL} + w_{CM} \times r + w_{BL} \tag{3.8}$$

ここで、 w_{TL} は表ライナの坪量、 w_{BL} は裏ライナの坪量、 w_{CM} は中芯の坪量、rは段繰り返し回数である.この坪量は、被包装物に対して必要となる強度を見積もる計算式として採用されている.

55

Flute type	Flute/300mm	Flute height (mm)	Take up factor (<i>r</i>)
A - Flute	34 ± 2	4.5 to 4.8	About 1.6
B - Flute	50 ± 2	2.5 to 2.8	About 1.4
C - Flute	40 ± 2	3.5 to 3.8	About 1.5
E - Flute	More than 80	1.10 to 1.15	-
F - Flute	More than 120	0.60 to 0.75	-
G - Flute	More than 180	0.50 to 0.55	-

Table. 3-1 Flute types

段ボールの強度は、主に段の種類と坪量によって決定されるものであるが、段ボールの 構造はライナおよび中芯を接合によって保たれている.そのため、基本的な強度の要因は この二部材を接着剤で固定する接合部の強度にあるものと考えられている¹⁷⁾.また、段ボ ールは同様の部材を利用しても、段の種類、坪量W、含水分βで段ボールの性質に差異が生 じることに加え、各製造メーカーで強度に個体差が生じる.

3.3.2 段ボールの環境変化による強度

温湿度といった環境変化による段ボールの性質に関して,3.2.2 節で段ボール原紙は含水 分によって繊維のメカニズムが変化することで強度に影響を与えることを既に述べた.段 ボールの含水分βの計算方法については,紙の水分試験方法¹⁸⁾によって規定されており,次 式から求めることができる.

$$\beta = \frac{\beta_0 - \beta_1}{\beta_0} \times 100 \tag{3.9}$$

ここで、 β_0 は乾燥前の試験片の質量、 β_1 は乾燥後の試験片の質量である.

手嶌ら¹⁹は温湿度が段ボール箱の圧縮強さに及ぼす影響について,湿度を同じ条件に設定して温度が20℃から40℃に上昇した場合には,段ボール箱の圧縮強さは約10%の低下に留まるが,温度を一定にして湿度が35%から95%に上昇した場合には,圧縮強さに約60%もの低下が認められていると報告している.また,中川ら²⁰は水分条件毎にエネルギー密度 -最大応力線図を求める事で,緩衝設計の一般化を図ることを可能としている.

このようなことから,段ボールは,温湿度による環境に応じて水分の吸収と排湿が行なわれるため,同一の紙素材でありながら含水量によって強度が変化する.そのため,設計

では段ボールが使用される環境等を考慮する必要がある.

3.3.3 段ボールの構造体強度

段ボール構造は, Fig. 3-4 に示すトラス構造(truss structure)²¹⁾となっている. このトラス構 造のメカニズムは,部材の各節点で自由度はないが,相互に作用されるように結合されて いるため,曲げモーメントは隣り合う部材でのみ発生する. そのため,荷重Pを与えたとき 部材には引張応力および圧縮応力のみが作用する. このようなトラス構造のメカニズムに よる力学的な特性は,段ボール構造に対しても適用できると考えられる. このようなこと から,トラス構造によってもたらされる構造的な安定性は,段ボール構造の力学的強度へ 寄与している.

Fig. 3-4 The truss mechanism

3.3.4 段ボールの引張強さ^{13,22)}

段ボール原紙の繊維の配列構成より、段の抄紙方向に引張が作用する場合には、ライナ における抄紙方向の引張応力 σ_s^{MDL} と垂直方向の引張応力 σ_s^{CDL} および引張方向と抄紙方向 のなす角 θ に対する引張応力 σ_d^{MD} は、それぞれ次式で示すことができる.

$$\sigma_s^{MDL} = (1+f)A \tag{3.10}$$

$$\sigma_s^{CDL} = (1+f)A \tag{3.11}$$

$$\sigma_{\theta}^{MD} = (1 + f - 2\sin\theta)\sigma_{it} \tag{3.12}$$

ここで、fは原紙の繊維方向による異方性の係数、 σ_{it} は原紙の繊維が等方に配向した際の引 張応力である.これら 2 つの係数は、式(3.10)の抄紙方向に対する引張応力 σ_s^{MDL} および式 (2.11)の垂直方向に対する引張応力 σ_s^{CDL} を用いて、それぞれ次式により表される.

$$f = \frac{(\sigma_s^{MDL} - \sigma_s^{CDL})}{(\sigma_s^{MDL} + \sigma_s^{CDL})}$$
(3.13)

$$\sigma_{it} = \frac{(\sigma_s^{MDL} + \sigma_s^{CDL})}{2} \tag{3.14}$$

また、ライナの抄紙方向における引張応力 σ_s^{MDL} およびひずみ ε の関係と垂直方向の引張応力 σ_s^{CDL} およびひずみ ε との関係はそれぞれ近似的に次式で表される.

$$\sigma_s^{MDL} = \alpha_1 \varepsilon^{n_1} \tag{3.15}$$

$$\sigma_s^{CDL} = \alpha_2 \varepsilon^{n_2} \tag{3.16}$$

ただし, $\alpha_1 = (\alpha_{11}, \alpha_{12})$ および $\alpha_2 = (\alpha_{21}, \alpha_{22})$ はひずみ係数, $n_1 = (n_{11}, n_{12})$ および $n_2 = (n_{21}, n_{22})$ はひずみ指数である. そこで,式(3.12),式(3.13),式(3.14),式(3.15),式(3.16) より,なす角が θ 時の引張り応力 σ とひずみ ϵ の関係は近似的に次式で表せられる.

$$\sigma_{\theta}^{MDL} = \alpha_{12} \varepsilon^{n_{12}} - (\alpha_{12} \varepsilon^{n_{12}} - \alpha_{22} \varepsilon^{n_{22}}) \sin \theta$$
(3.17)

中芯においても同様に,段の抄紙方向に引張が作用する場合には,中芯の抄紙方向の引 張応力*σ*_s^{MDM}と垂直方向の引張応力*σ*_s^{CDM}および引張方向と抄紙方向とのなす角*θ*における 引張り応力*σ*_a^{MD}は,それぞれ次式で示すことができる.

$$\sigma_s^{MDM} = \left(1 + \bar{f}\right)\bar{\sigma}_{it} \tag{3.18}$$

$$\sigma_s^{CDM} = \left(1 + \bar{f}\right)\bar{\sigma}_{it} \tag{3.19}$$

$$\sigma_{\theta}^{MDM} = \left(1 + \bar{f} - 2\sin\theta\right)\bar{\sigma}_{it} \tag{3.20}$$

ここで、 \bar{f} は原紙の繊維方向による異方性の係数、 $\bar{\sigma}_{it}$ は原紙の繊維が等方に配向した際の引 張応力であり、これら2つの抄紙方向の引張応力 σ_s^{MDM} と垂直方向の引張応力 σ_s^{CDM} を用いて、 それぞれ次式により表される.

$$\bar{f} = \frac{(\sigma_s^{MDM} - \sigma_s^{CDM})}{(\sigma_s^{MDM} + \sigma_s^{CDM})}$$
(3.21)

$$\sigma_{\theta}^{MDM} = \frac{(\sigma_s^{MDM} + \sigma_s^{CDM})}{2}$$
(3.22)

また、中芯における抄紙方向の引張応力 $\bar{\sigma}_{\theta}^{MD}$ とひずみ $\bar{\epsilon}$ との関係および垂直方向の引張応力 $\bar{\sigma}_{t}^{CD}$ とひずみ $\bar{\epsilon}$ との関係はそれぞれ近似的に次式で表される.

$$\sigma_t^{MDM} = \bar{\alpha}_1 \bar{\varepsilon}^{n_1} \tag{3.23}$$

$$\sigma_t^{CDM} = \bar{\alpha}_2 \bar{\varepsilon}^{n_2} \tag{3.24}$$

ここで、 \bar{a}_1 および \bar{a}_2 はひずみ係数、 \bar{n}_1 および \bar{n}_2 はひずみ指数である.式(3.20)、式(3.21)、式 (3.22)、式(3.23)、式(3.24)を用いてなす角が θ 時の引張り応力 $\bar{\sigma}_{\theta}^{MD}$ とひずみ $\bar{\epsilon}$ の関係は近似的 に次式で表される.

$$\sigma_{\theta}^{MDM} = \bar{\alpha}_1 \varepsilon^{\bar{n}_1} - (\bar{\alpha}_1 \varepsilon^{\bar{n}_1} - \bar{\alpha}_2 \varepsilon^{\bar{n}_2}) \sin\theta \tag{3.25}$$

松島らは式(3.17)と式(3.25)より求めたライナの引張り応力 σ_{θ}^{MDM} - ひずみ ϵ と中芯の引張り 応力 $\bar{\sigma}_{\theta}^{MD}$ - ひずみ ϵ を実験値と比較し整合性を確認しており,式(3.17)と式(3.25)の変形強度 表示式が妥当であると示している.

3.3.5 面圧力に対する強さ^{13,23)}

段ボールは中芯の上下段頂部がライナに貼合されており、その接合部は糊付けによる加 工が施されている.この糊付けにより接合部の詳細は、複雑な材質や形状の変化などを伴 っている.ここでは、このような材質や形状の変化など、簡便のため近似的に均一である とする.すなわち、段の波形状を正弦波として考える.

段の厚さの中央位置 y_0 は、段の高さ h_f と中芯の長さ l_{CM} を用いて次式で表すことができる.

$$y_0 = \left(\frac{h_f}{2}\right) \sin\left(\frac{2\pi x}{l_{CM}}\right) \tag{3.26}$$

ここで,xは抄紙方向の基準位置Oからの距離である.また,中芯内の位置yは次式で表される.

$$y = y_0 + t\cos\theta \tag{3.27}$$

ここで、tは中芯の厚さ中心点 (x, y_0) から厚さ方向の距離、 θ は厚さ中央面の接線と中央面 と抄向方向xとのなす角であり、次式で表される.

$$\theta = \tan^{-1} \left(\frac{dy_0}{dx} \right) \tag{3.28}$$

また,段ボールに荷重が与えられると,ライナとの接触を介して中芯に負荷が生じる.こ の負荷は,中芯の上下段頂部に集中して作用する.そのため,中芯の上下方向に荷重が作 用するが,実際の中芯が生じる変形は,糊付け部分の影響や加工による変化などが加わり, 複雑な形状になると考えられる.このような複雑な形状となる部分は,ライナと中芯との 糊付け部に限られており,ライナと中芯の接触部間ではライナの張力による応力の一様化 も生じると考えられている.また,サンブナンの原理(Saint-Venent's principle)²⁴⁾により集中 応力が発生する位置から中芯の厚さt程度離れるとほぼ一様となり,単純な変形をなす応力 を示すとされている.そこで,近似的に,はり設計の一般的方法に従い,荷重位置をFig.3-5 に示した,はりの両端が上下移動をする曲りはり,すなわち両端の角度の変化および横方 向変化は0であるとすると,着目点の軸力Nは力の平衡方程式より次式で表せられる.

$$N = -(W\sin\theta + W_0\cos\theta) \tag{3.29}$$

ここで、Wは荷重、 W_0 は荷重Wに伴うx軸方向の変位を阻止する横圧である.また、曲げモーメントMは、モーメントの平衡方程式よりで次式となる.

$$M = P_{CD} \left(\frac{l_{CD}}{4} - x\right) - P_{MD} \left(\frac{h}{2} - y\right) + M_0$$
(3.30)

ここで、 P_{MD} は抄紙方向の荷重、 P_{CD} は垂直方向の荷重、 M_0 はライナの接触部に働く作用力、 すなわち単位幅当たりに働く固定モーメントである。固定モーメント M_0 は、中芯の反対称 性の条件により、x = 0の時、y = 0、M = 0となり、次式によって表すことができる。

$$M_0 = \left(\frac{P_{CD}}{4}\right) l_{CD} - \frac{P_{MD}h_f}{2}$$
(3.31)

式(3.30)に式(3.31)を代入すると、曲げモーメントMは次式となる.

$$M = -P_{CD}x + P_{MD}y \tag{3.32}$$

また,厚さ中央部の位置から厚さ方向に沿う距離tにおける中芯の曲げ応力σは,Fig. 3-5 に 示すように単位幅をもつ曲りはりと同様なものと考えると,近似的に次式で表すことがで きる.

$$\sigma = \left(\frac{N}{T}\right) + \left(\frac{M}{(T_p)}\right) \left(\frac{1+y}{(k(p+y))}\right)$$
(3.33)

ただし,

$$k = \frac{\left(\frac{t}{(2p)}\right)^2}{3} + \frac{\left(\frac{t}{(2p)}\right)^4}{5} + \frac{\left(\frac{t}{(2p)}\right)^6}{7}$$
(3.34)

ここで、pは着目位置 y_0 の中立面の曲率半径であり、次式によって表すことができる²⁵⁾.

$$p = -\frac{\left(1 + \left(\frac{dx_0}{dx}\right)^2\right)^{\frac{3}{2}}}{\left(\frac{d^2y_0}{dx^2}\right)}$$
(3.35)

また、ライナと中芯との接着部における垂直方向の荷重 P_{CD} に対する変位は、ライナによる 拘束により近似的に 0 であると考える.すなわち、カスチリアノの定理(Castigliano's theorem)²⁶⁾により垂直方向荷重 P_{CD} を受ける垂直方向変位 δ_{CD} は次式となる.

$$\delta_{MD} = \frac{\partial U(P_{CD}, P_{MD})}{\partial P_{MD}}$$

$$= \left(-\frac{1}{(ET)}\right) \int_{0}^{l} \left(\left(\frac{N\cos\theta - \left(\frac{M}{p^{2}}\right)(l+K)y}{K + \left(\frac{M}{p}\right)\cos\theta - \left(\frac{N}{p}\right)x\cos\theta}\right) \right) dS$$
(3.36)

垂直方向変位 δ_{CD} が 0 となる次式の変形条件により、抄紙方向の荷重 P_{MD} の値を数値計算に よって求めることができる.

$$\delta_{CD}\left(x = \frac{l_{CM}}{4}\right) = 0 \tag{3.37}$$

ただし, Uは弾性エネルギーであり, 次式によって表される²⁷⁾.

$$U = \int_{x=0}^{x=l_{CM}/4} \left[\frac{N^2}{(2ET)} + \frac{F^2}{(2GT)} + \frac{M^2(1+k)}{(2ETkp^2)} + \frac{MN}{(ET_p)} \right] dS$$
(3.38)

Fはせん断力, Sは原点Oから中芯の厚さの中央位置 y_0 に沿う距離である.式(3.38)の条件を 満たす抄紙方向の荷重 P_{MD} を数値解析によって求め,得られた値を式(3.29)および式(3.32)に 代入すると着目点の軸力Nと曲げモーメントMが求められる.また,式(3.33)によって垂直 方向の圧縮荷重 $P_{CD} = 1\mu N/mm$ における中芯内の曲げ応力 σ_{CD} を求めることができる.この 極大および微小の生成により,段ボールの面圧縮による座屈は山谷部が座屈を起こすと一 気に極大および極小に位置までの域の座屈が生じるものと考えられる.

Fig. 3-5 A fundamental element of corrugated sheet. Positions (x, y_0, t) for SCP medium of partial elliptic wave. Here *T*, *L*, *h*, *W* and *W*₀ represent thickness, thickness, wavelength, height, weight and lateral force of corrugated sheets, respective.

3.4 段ボール試験

段ボールの基礎物性は,段ボールを用いた包装設計において重要な項目である.ここでは,基礎物性を得るための試験の概略を述べる.

3.4.1 原紙の物性試験

(1)破裂強さ

破裂強さは、段ボール原紙の総合的な判定ができる物性として広く用いられており、その試験方法は、板紙–破裂強さ試験方法(board-Determination of bursting strength)²⁸⁾で規定されている.この試験方法は、ミューレン高圧試験機を用いて行われる.そのメカニズムは、試験片を締付板に締め付け、規定のゴム被膜をグリセリン溶液で押し上げて膨張させることで試験片を破裂させるものであり、試験片が破裂したときの抵抗値として破裂強さ σ_b を測定する.比破裂強さ σ_b は、破裂強さ σ_b と試験片の坪量Wを用いて次式で求められる.

$$\sigma_b' = \frac{\sigma_b}{W} \tag{3.39}$$

ここで、また、合計破裂強さ っしば次式で表せられる.

ここで、 σ_{bTL} は表ライナの破裂強さ、 σ_{bBL} は裏ライナの破裂強さ、 σ_{bCM} は中芯の破裂強さである.

(2) 圧縮試験

段ボール原紙の圧縮強さを測定する試験方法は、紙及び板紙-圧縮強さ試験方法-リン グクラッシュ法(Paper and board-Determination of compressive strength- Ring crush method)²⁹⁾ と紙及び板紙-圧縮強さ試験方法-ショートスパン法(Paper and board- Compressive strength-span test)³⁰⁾に規定されている.リングクラッシュ法を用いた試験方法は、規定の寸 法に切断した段ボール原紙の試験片を円筒状に固定して加圧板で円筒軸方向に圧縮し、座 屈時の最大荷重を圧縮強度とする試験方法である.リングクラッシュ圧縮強さ σ_r は、リング クラッシュ圧縮試験による試験片の圧縮強さ σ_{rt} を用いて次式で求めることができる.

$$\sigma_r = \frac{\sigma_{rt}}{l} \tag{3.41}$$

ここで、lは試験片の長さである.また、比リングクラッシュ圧縮強さ σ_r はリンククラッシュ圧縮強さ σ_r を坪量で除した値で次式により求められる.

$$\sigma_r' = \frac{\sigma_r}{W} \times 100 \tag{3.42}$$

ここで、Wは試験片の坪量である.リングクラッシュ圧縮強さ*σ_{rc}*は、後述する段ボール箱の圧縮強さと強い相関性があるので重要視されている物性である.また、構成原紙の総合リングクラッシュ値は次式により表すことができる.

$$\bar{\sigma}_r = \sigma_{rTL} + \sigma_{rBL} + \sigma_{rCM} \times r \tag{3.43}$$

ここで、 σ_{rTL} は表ライナのリングクラッシュ圧縮強さ、 σ_{rBL} は裏ライナのリングクラッシュの圧縮強さ、 σ_{rCM} は中芯のリングクラッシュ圧縮強さ、rは中芯の段操率である.

一方でショートスパン法による試験方法は,試験片をスパン 0.7mm のクランプに挟んで 圧縮し,試験片が破壊した時の最大荷重を圧縮強度とする測定法である.ショートスパン 法は国際的に用いられている手法であり、特にヨーロッパなどではリングクラッシュ法よ り多く用いられている.ショートスパン法による圧縮強さ*σ*^bは、次式により求めることが できる.

$$\sigma_s = \frac{P_c}{l_w} \tag{3.44}$$

ここで、 P_c は平均最大圧縮力、 l_w は試験片の初期幅である.また、比圧縮強さ σ'_s は次式により求めることができる.

$$\sigma'_s = \frac{\sigma_s}{W} \times 1000 \tag{3.45}$$

ここで,Wは坪量である.

本国においては、ライナおよび中芯の JIS 規格にリングクラッシュ圧縮強度が規定されている.

3.4.2 段ボールシート

段ボールシートに関する試験方法は、平面圧縮強さ³¹⁾と垂直圧縮強さ(エッジクラッシュ 強さ)³²⁾が JIS 規格により規格化されている.

平面圧縮強さ³¹⁾の試験法は、2つの平行な圧縮盤を備えた圧縮試験機を用いて、試験片の表面に一定の速度で荷重を加え、試験片の波形が潰れる最大荷重を平面圧縮荷重として測定する.平面圧縮強さσ_pは、次式により求めることができる.

$$\sigma_p = \frac{P_p}{A} \tag{3.46}$$

ここで、 P_p は平面圧縮試験における最大荷重、Aは試験片の面積である.一方で、垂直圧縮 強さ³²⁾の試験法は、試験片の段が圧縮盤面に対して垂直になるように圧縮試験機の圧縮盤 間に置き、試験片が座屈するまで一定の荷重を与える.そのときの最大荷重を垂直圧縮強 として測定する.垂直圧縮強さ σ_n は次式により求めることができる. ここで、Pnは垂直圧縮強さにおける最大荷重である.

3.4.3 原紙と段ボールシート物性の関係

段ボールシートはライナや中芯といった段ボール原紙から構成される紙材料であるが、 これらは製造工程や構造も異なるため、段ボール構造と段ボール原紙とで等価な物性の関 係は保持できないと考えられている. 佐藤ら³³⁾は、段ボールシートおよび段ボール原紙の 物性の関係について、段ボール原紙の総合リングクラッシュ値 $\bar{\sigma}_r$ と段ボールシートの垂直圧 縮強さ σ_n との間では正比例関係にあり、相関係数も高い関係となる. 一方で、段ボール原 紙の合計破裂強さ $\bar{\sigma}_b$ と段ボールシートの垂直圧縮強さ σ_n は正比例の関係になく、段ボール 原紙の合計破裂強さ $\bar{\sigma}_b$ が高い場合でも、段ボールシートの垂直圧縮強さ σ_n は低くならない ことも示されている. このように、段ボールシートと段ボール原紙の状態では、必ずしも 物性が同一となるわけではない.

3.5 段ボール包装品の設計法とその問題点

段ボール包装品の設計では、3.4節で述べた試験法の一部を活用して行われる.しかしな がら、その設計は従来の設計法を踏襲しており、設計法としての実績はあるものの、課題 を残している点も散見される.ここでは、段ボール箱および緩衝材の設計技法について問 題点を踏まえて述べる.

3.5.1 段ボール箱設計

段ボール箱を設計する際の圧縮強さを推定する計算式に R.C. Mckee らによる Makee 式³⁴⁾ や K. Q. Kellicutt による Kellicutt 式³⁵⁾などが存在する.米国や東南アジアでは,主に Mckee 式を用いて段ボール箱の圧縮強さを推定している. Mckee 式は垂直圧縮試験²⁹⁾による垂直 圧縮強さ σ_n を用いて次式によって表すことができる.

$$\sigma_{mc} = 2.02\sigma_n^{0.746} \left(\sqrt{D_x D_y}\right)^{0.254} Z^{0.492}$$
(3.48)

ここで、 P_m はエッジクラッシュ強さ、 D_x は段ボールシートの抄紙方向の曲げ強さ、 D_y は段ボールシートの垂直方向の曲げ強さ、Zは段ボール箱の周辺長である.また、R.C. Mckee は式(3.48)の段ボールシートの抄紙方向の曲げ強さ D_x 、段ボールシートの垂直方向の曲げ強さ D_y の測定を省くことで、簡素化した下記の式を提案している.

ここで, h_{cc}は段ボールの厚みである.

一方で、本国では段ボール箱の設計の多くで、Kellicutt 式を採用している. Kellicutt 式の 適用は両面段ボールの A フルート、B フルート、C フルートに限定されており、複両面段 ボールに対しての適用は、K. Q. Kellicutt の報告³⁰で言及していない. Kellicutt 式による圧 縮強度 σ_k は、総合リングクラッシュ値 $\bar{\sigma}_r$ を基本構成要素として、次式により求めることが できる.

$$\sigma_k = \bar{\sigma}_r \left(\frac{(a_{\chi 2})^2}{\left(\frac{Z}{4}\right)^2} \right)^{\frac{1}{3}} Z \cdot J$$
(3.50)

ここで、*a*_{x2}はフルート常数、Z は箱の周辺長、Jは箱定数である.K.Q.Kellicutt の報告³⁵⁾では、箱の定数Jが仮に定められており、その値がばらついていることが指摘されている. その後の報告³⁶⁾では、フルート常数*a*_{x2}や箱常数が新たに設けられたものの整合性がないこ とが指摘されており、川端³⁷⁾は Kellicutte 式の新定数の提案を行っている.また、Kellicutt 式では、総合リングクラッシュ値を用いているが、この値を得るためのリングクラッシュ 試験は、段ボール原紙の厚さに影響されるところが大きい.そのため、段ボールの剛性は、 段ボール原紙の厚さではなく、段ボールシートの厚さによる寄与が大きいと考えられてい る³⁸⁾.リングクラッシュ試験は、段ボール原紙を円筒状の形状にして測定を行う関係上、 測定値の性質も複雑なものとなり、単なる段ボール原紙の剛性を示すとは言い難い.加え て、Kellicutt 式では、箱の寸法により強度が変化する因子として周辺長のみ取り上げている ために、箱の高さ形状等の影響効果が加えられていないことや段ボールシートの厚さやフ ルート形状など構造上の因子が無視されているなどの問題もあり、Kellicutte 式から算出さ れる圧縮強度は経験的に過大評価となることが知られている.

3.5.2 緩衝材

段ボールを利用した紙系緩衝材の設計では,適切な緩衝材を設計するための技法が確立 されていない.そのため,被包装物の重量・形状・寸法,脆弱部や輸送環境条件,許容衝 撃値などの情報に基づいて緩衝材のサンプルを試作し,落下試験を実施している.緩衝材 設計では,サンプルの落下試験時に発生する加速度が製品の許容加速度より小さくなるよ うに,サンプルの試作と落下試験を繰り返すことで緩衝性の機能評価を行っており,これ
までの設計経験と試行錯誤による方法が多くの設計で採用されている.

落下試験³⁹において,一般的には被包装品の重量から想定される高さが規定⁴⁰されてい るが,輸送中に被包装物が破損した場合は,想定した高さよりも高い所から落下したこと が原因であるため,落下試験の条件を見直す必要がある.一方で,緩衝材の強度が過多と なるような安全側に寄り過ぎた緩衝材設計となれば過剰包装と成り得る.

発泡プラスチック系緩衝材においては、従来から基礎データや設計技法が確立⁴¹⁻⁴²され ているが、段ボールの緩衝材設計は、形状や寸法などが異なる製品を取り扱う場合に緩衝 材の構造も製品に合わせて異なる.このようなことから、緩衝設計に必要な基礎データを 蓄積することが困難であるために、緩衝材設計から合理的な落下高さなど任意条件におい て緩衝材の必要寸法を求めることが要求される.

また,段ボールは温湿度の影響を受けることから,同一素材であるが,環境によって物 性が異なる性質をもつ.中川²⁰⁾は,水分条件毎にエネルギー密度-最大応力線図を求める 事で,加速度の推測や緩衝設計の一般化を図っている緩衝設計技法を提案している.

3.5.3 段ボールの数値シミュレーション解析

中川ら⁴³は、段ボールシートを詳細にモデル化したシェルモデルと簡易的にモデル化し たソリッド要素モデルで数値シミュレーションの有効性を検討している. Fig. 3-6 には段ボ ールシートの中芯及びライナをそれぞれシェル要素でモデル化した詳細モデルを示し, Fig. 3-7 には、Fig. 3-6 に示した詳細モデルを用いてエンドクラッシュ解析を行った結果の一部 (0~250N)を示す.中芯とライナの物性値は、それぞれの原紙に対して行った試験から 求めた値を用いている. Fig. 3-7 の実験値と解析結果の比較より、線形範囲の荷重-変位特 性において実験値と解析結果で差があり、線形範囲においても精度良く解析できていると は言い難い.一方で、Fig. 3-8 には、段ボールを1枚の板としてモデル化した、簡易モデル を用いてフラットクラッシュ解析を行った結果を示す.ここではソリッド要素については 3 軸独立でそれぞれ異方性かつ非線形特性を考慮し、物性値はライナや中芯単体での物性値 ではなく、段ボールシートの物性値を試験(フラットクラッシュ試験)から求めて解析に 利用している. Fig. 3-8 の実験値と解析結果との比較より、線形範囲の荷重-変位特性にお いて実験値と解析結果の挙動は完全に一致していない.このように、シェル要素による詳

川島ら⁴⁴)は Fig. 3-9 に示す段ボール箱のコーナー部における(罫線と呼ばれる折り曲げ 線を入れて作成される)折の幾何学的な形状を除けば,段ボール箱の圧縮強さは平板の曲 げ強さと同じであることから,段ボール平板をソリッド要素で詳細にモデル化して曲げ解 析を行っている.この解析では,要素は4節点シェル要素,材料モデルは段ボールが異方

細モデルも,ソリッド要素による簡易モデルも十分な解析精度は得られていない.

性を有することから直交異方性弾性体を用いて、材料特性を原紙の圧縮試験から同定して いる.Fig.3-10に実験値と解析結果の比較を示す.Fig.3-10より、線形範囲の荷重-変位特 性は実験値と解析結果に差が生じている.これらの誤差の原因として各原紙で物性値を同 定すると、段ボール構造体とした時の糊等の剛性を考慮できていないため解析結果と測定 値に差が生じるとしている.

以上より,段ボールに対して数値シミュレーション解析を適用するには,解析の難易度 が高い.特に,物性値については試験値から求める方法を取っており,逆解析的に同定す るといった方法は,現在のところ見受けられない.

Fig. 3-6 Detailed model (shell element model) of corrugated fiberboard⁴³⁾

Fig.3-7 Elements on larger scale of comparison between calculated (shell element model) and found values of compressive strength by ring crush test⁴³⁾

Displacement (mm)

Fig. 3-8 Elements on larger scale of Comparison between calculated (solid model) and found values of compressive strength by flat crush test⁴³⁾

Fig. 3-9 Geometric shape of corner parts in corrugated fiberboard⁴⁴⁾

Displacement (mm)

Fig. 3-10 Comparison between calculated and found value of bending strength by bending test⁴⁴⁾

3.6 おわりに

本章では、段ボール製品の設計で必要となる段ボールの構造や性質,設計法の概要およ びその問題点を既存の研究や規格を中心にレビューすると共に既存の数値シミュレーショ ンの研究例から本研究の有用性を示した.具体的にまとめると以下の通りである.

- ライナや中芯といった段ボール原紙は繊維の配向性によって抄紙方向と垂直方向とで 機械的特性が異なる異方性材料として取り扱われる.
- ② 段ボール原紙は温湿度といった環境の変化に対する反応が極めて高く、繊維が膨張と 収縮という形態変化を起こす。特に相対湿度は段ボールの強度特性に与える影響が大 きい。
- ③ Kellicutt 式で採用しているリングクラッシュ試験は段ボール原紙の厚さに影響される ところが大きいことから、段ボールの剛性は段ボール原紙の厚さではなく段ボールシ ートとしたときの影響を受けることとなる.また、リングクラッシュ測定値は原紙を 円筒状の形状にして試験を行う関係上、ジャンピング現象が起こるため、測定値も複 雑なものとなり、単なる原紙の剛性を示すとは言い難い.また、Kellicutt 式は箱の寸法 により強度が変化する因子として周辺長のみ取り上げているので、箱の高さや形状等 の影響効果が入っていない.このように Kellicutte 式には、測定値も再現性の乏しいと いったリングクラッシュ試験の問題に加えて、段ボールシートの厚さ、フルート形状 などの構造上からくる因子を無視されているなどのケリカット式の問題があることを 示した.
- ④ 緩衝材の設計では、被包装物の重量・形状・寸法、脆弱部や輸送環境条件、許容衝撃 値などの情報に基づいて緩衝材のサンプルを試作し、落下試験を実施している.段ボ ールの緩衝材設計においては、形状や寸法などが異なる製品を取り扱う場合、緩衝材 の構造も製品に合わせて異なるため、緩衝設計の一般化のために必要な基礎データの 蓄積が非常に困難であるという問題があり、紙系緩衝材においては発泡プラスチック のように基礎データや設計技法が確立されておらず、これまでの緩衝材設計から合理 的な落下高さなど任意条件において緩衝材の必要寸法を求めることが要求される.ま た、このような、その場限りの緩衝材設計では設計の不効率性を招くことを示した.
- ⑤ 既存の研究から、段ボールのように複雑で異方性が強い材料については現在の数値シ ミュレーション技術をもってしても実用に十分な精度の解析は困難であることを示した。

【第3章 参考文献】

- 1) 日本工業規格, JIS P 3902 段ボール用ライナ
- 2) 日本工業規格, JIS P3904 段ボール用中しん原紙
- 3) 尾崎麻子, 食用品の紙・板紙製容器包装, 生活衛生, Vol. 49, No. 3, pp. 135-143 (2005)
- 4) 岡山隆之, リサイクルによる古紙パルプの物性変化について, 紙パ技協誌, Vol. 56, No. 7, pp. 986-992 (2002)
- 6) 五十嵐清一, 段ボール包装技術実務編,日報出版 (2012)
- 7) 日本機械学会, JSME テキストシリーズ 材料力学, 丸善, p.23 (2007)
- 8) 木島常明,山川功,紙の伸縮安定性に及ぼす乾燥時収縮の影響,紙パ技協誌, Vol. 32, No. 10, pp. 584-592 (1978)
- W. Brecht, and H. Erfurt, Wet-Web Strength of Mechanical and Chemical Pulps of Different Form Composition, Tappi, Vol. 42, No. 12, 959-968 (1959)
- D. Page and P. A. Tydeman, A New Theory of the Shrinkage Structure and Properties of Paper, The Formation and Structure of Paper, Vol. 1, pp. 397-425 (1962)
- L. S. Nordman, Laboratory Investigations into the Dimensional Stability of Paper, Tappi, Vol. 41, No. 1, pp. 23-50 (1958)
- 12) H. F. Rance, Effect of Water Removal on Sheet Properties The Water Evaporation Phase, Tappi, Vol. 37, No. 12, pp. 640-654 (1954)
- 13) 松島成夫, 段ボール強度の力学的機構について, 紙パ技協誌, Vol. 48, No. 2, pp. 324-343 (1994)
- 14) 日本機械学会, JSME テキストシリーズ 材料力学, 丸善, pp. 70-74 (2007)
- 15) 日本工業規格, JIS Z 1516 外装用段ボール
- 16) 日本工業規格, JIS Z 0104 段ボール用語
- 17) 松島理,松島成夫,段ボールシートにおける板紙と中芯との引離し接合強度の応力解析
 (第1報)両面段ボールの応力と変位状況,紙パ技協誌, Vol. 50, No. 4, pp. 707-716 (1996)
- 18) 日本工業規格, JIS P 8127 紙及び板紙-ロットの水分試験方法-乾燥機による方法
- 19) 手嶌正,小林兼弘,段ボール箱の圧縮強さに及ぼす温湿度の影響,愛知県工業技術センター報告,No.18, pp. 65-69 (1982)
- 20) 中川幸臣,水分の影響を考慮した段ボール緩衝材の包装設計について,日本航海学会論 文集, Vol. 112, pp. 241-246 (2005)
- 21) 日本機械学会, JSME テキストシリーズ材料力学, 丸善出版, p. 169 (2007)
- 22) 松島成夫,奥田隆宏,宮内治,野沢光治,段ボールの引張変形強度,紙パ技協誌, Vol. 36, No. 3, pp. 377-387 (1982)

- 23) 松島成夫, 矢野忠, 松島晟, 面圧を受ける段ボール中芯の弾性変形強度, 紙パ技協誌,
 Vol. 42, No. 5, pp. 480-486 (1988)
- 24) 日本機械学会, JSME テキストシリーズ 材料力学, 丸善出版, p. 24 (2007)
- 25) 松島理, 松島成夫, 矢野忠, 面圧力を受ける段ボール中芯の形状と弾性強度, 紙パ技協誌, Vol. 48, No. 8, pp. 1067-1077 (1994)
- 26) 日本機械学会, JSME テキストシリーズ 材料力学, 丸善出版, p. 162 (2007)
- 27) 黒木剛司朗, 材料力学, 森北出版, p. 150 (1975)
- 28) 日本工業規格, JIS P 8131 板紙-破裂強さ試験方法
- 29) 日本工業規格, JIS P 8126 紙及び板紙- 圧縮強さ試験方法-リングクラッシュ法
- 30) 日本規格学会, JIS P 8156 紙及び板紙- 圧縮強さ試験方法-ショートスパン法
- 31) 日本工業規格, JIS Z 0431-1 段ボールー第一部:平面圧縮強さ試験方法
- 32) 日本工業規格, JIS Z 0403-2 段ボールー第二部:垂直圧縮強さ試験方法
- 33) 佐藤薫,子役丸孝,段ボール原紙強度と段ボールシートおよび段ボール箱の強度との関係について,日本包装学会誌, Vol. 17, No.5, pp. 343-356 (2008)
- 34) R. C. McKee, J. W. Gander and J. R. Wachuta, Compression Strength Formula for Corrugated Boxes, Paperboard Packaging, Vol. 48, No. 8, pp. 149-159 (1963)
- 35) K. Q. Kellicutt and E. F. Landt, Basic Design Data for the Use of Fiberboard in Shipping Containers, United States Department of Agriculture Forest Service Forest Products Laboratory (1951)
- 36) K. Q. Kellicutt, E. F. Landt and V. C. Setterholm, Basic Design Data for the Use of Fiberboard in Shipping Containers: Box Strength Calculator, United States Department of Agriculture Forest Service Forest Products Laboratory (1952)
- 37) 川端洋一,段ボール箱の圧縮強さ(1) Kellicutt 式の新定数提案-,日本包装学会誌, Vol.
 6, No. 1, pp. 19-23 (1997)
- 38) 松岡宏, 段ボール箱の圧縮強度について, Vol. 15, No. 8, pp. 504-510 (1961)
- 39) 日本工業規格, JIS Z 0202 包装貨物 落下試験方法
- 40) 日本工業規格, JIS Z 0200 包装貨物一性能試験方法一般通則
- 41) 前沢栄一,山崎博,岸田欣増,家電包装の非線形落下衝撃解析(有限要素法活用),日本 包装技術協会, Vol. 40, No. 2, pp. 195-198 (2002)
- 42) 星野茂雄,豊田実,緩衝包装設計ハンドブック,日本生産性本部, pp. 147-346 (1969)
- 43) 中川幸臣, 丹羽一邦, 包装設計の FEM 解析における段ボールモデル化の検討,日本包装 学会誌, Vol. 14. No. 5, pp.327-327 (2005)
- 44) 川島義隆, 横山貴広, 岩田靖三, 野口哲司,原田匡人, 梅津康義, 松井和己, 手塚明, 立体

紙製品の構造解析に関する研究(第4報),岐阜県生産情報技術研究所報告(第5号) (2003)

く第4章 主な表記>

- D_{tp}:試験片の厚さ
- *E*_A:調整済み弾性係数
- *H_{cm}*: 中芯の高さ
- Lmm:マクロモデルの縦寸法
- L_{tp}:試験片の縦寸法
- Luc:ユニットセルの縦寸法
- T_{mm}:マクロモデルの厚さ
- Tuc:ユニットセルの厚さ
- Wmm:マクロモデルの幅寸法
- Wtp: 試験片の幅寸法
- Wuc:ユニットセルの幅寸法
- a:最小二乗法における切片
- b:最小二乗法における傾き
- e_l : ライナの弾性係数
- *e_m*:中芯の弾性係数
- n: 測定値のデータ総数
- u^{CD}: 垂直方向の目標変位
- u^{MD}: 抄紙方向の目標変位
- u^{CD}:均質化法による垂直方向の解析結果
- u^{MD}:均質化法による抄紙方向の解析結果
- x:最小二乗法における説明変数
- *x_i*:測定値の荷重
- **x**:測定値の荷重平均
- x_i^{Res}:応答局面法における説明変数
- y:最小二乗法における目的変数
- y_i: 測定値の変位
- **y**:測定値の変位平均
- y^{Res}:応答局面法における目的変数
- ΔU^{CD}垂直方向の変位勾配
- ΔU^{MD}抄紙方向の変位勾配

第4章 実験と数値シミュレーション融合による

数値解析の提案

4.1 はじめに

本章では、本論文の提案手法の1つである、実験と数値シミュレーションの融合による 逆解析による物性値の推定とこれを用いた解析の詳細について述べる.手法を具体的に示 すため、第3章で述べた両面段ボールの解析を例として取り上げる.

段ボールの数値解析は、均質化法を適用することで効率的に解析を行なうことができる. しかしながら、均質化法は三次元構造体に対して全方向に周期性を有することを前提とし て理論が成り立っており、厚さ方向に周期性のない¹⁰両面段ボールに適用すると、その解析 精度に保証がないことは第3章で述べた.そのため、「調整済み弾性係数」を提案すること で、両面段ボールに対して均質化法の適用を図る.まず、段ボールが有する剛性を数値解 析の弾性係数で定義できることに着目する.この関係を利用して段ボールの剛性と数値解 析の弾性係数が同じ値を取るようして得られた調整済み弾性係数を用いることで、両面段 ボールに対して均質化法の適用が可能となることを述べる.その中で、段ボールの剛性に 対しては、両面段ボールの曲げ試験から得られる荷重一変位特性を取り扱う.一方で数値 解析に対しては、均質化理論に倣い両面段ボールをミクロモデルとマクロモデルとして作 成する.ここでの、ミクロモデルとマクロモデルから、段ボールの荷重 - 変位特性と等価 の関係となるような調整済み弾性係数を応答局面法から簡易的に算出する方法を具体的に 示す.

提案した調整済み弾性係数の妥当性に関しては,調整済み弾性係数をパラメータに設定 した均質化法と測定値を比較することで示す.さらに,ここでは,調整済み弾性係数を決 定値として取り扱っているが,実際にはばらつきが含まれる.このことを明らかにするこ とで,5章以降の確率的評価法の基盤とする.

4.2 調整済み弾性係数の必要性

複両面段ボールや複々両面段ボールといった厚さ方向が2層以上の積層構造から成る段 ボールに対して均質化法を適用する際には、必要となる弾性係数を算出式²⁾から求めている. 積層構造においては、このような算出式から求められた弾性係数を均質化法に用いること で有益な解析結果を得ている³⁾.一方で、厚さ方向に周期性のない両面段ボールに対して積 層段ボールに用いられるような弾性係数をそのまま用いると解析精度の保障はない.この ようなことから両面段ボールに用いる弾性係数においては,算出式とは別に解析精度に関 するパラメータを求める必要がある.そのため,本研究では算出式から弾性係数を求める のではなく,測定値と均質化法を用いて解析精度を向上させる弾性係数の算出方法を提案 する.

弾性係数は段ボールの曲げ変形と関連したパラメータであることに着目すると、段ボールの曲げ剛性と数値解析の弾性係数が同値となるようにすればよい.具体的には、段ボールの曲げ試験から得られた測定値の変位に均質化法の解析結果の変位が一致するように弾性係数を逆解析的に求める.このようにして算出される弾性係数は、測定値の変位と解析結果が同値となるように弾性係数を調整することから、「調整済み弾性係数(Adjusted elastic modulus)」 E_A と呼ばれる.

調整済み弾性係数E_Aは, Fig. 4-1 に示すフローチャートに従い求めることができる.

Fig. 4-1 calculation of adjusted elastic modulus

調整済み弾性係数E_Aは,抄紙方向と垂直方向の段ボールの曲げ変形に基づき数値解析を 併用して求める.そのためまず,段ボールの曲げ変形を得るための試験を行なう.ここで の曲げ試験から得られた,抄紙方向と垂直方向の測定値に対して任意の荷重における変位 を決定する.この変位は均質化法の解析結果の変位を合わせるための目標となることから 目標変位(targeted displacement)と呼ぶことにする.次に均質化法による解析結果の変位と目 標変位が一致するように弾性係数を変数として複数点解析を行なう.均質化法は均質化理 論で取り扱える範囲内の一般的な解法を用いる.弾性係数を変数として複数点解析を行な った変位の解析結果をサンプル点として両目方向に対して弾性係数一変位応答を作成する. 調整済み弾性係数*E*_Aは抄紙方向および垂直方向の弾性係数一変位応答の交点座標を用いて 決定できる.

4.3 曲げ試験(bending test)

調整済み弾性係数は,測定値と均質化法を併用することで得られるパラメータである. そのため,両面段ボールを対象とした曲げ試験から測定値として荷重-変位特性を得る方 法を述べる.さらに,本研究で議論する対象領域を荷重-変位特性から示し,調整済み弾 性係数を得るための目標変位を定めることで,次章以降述べる均質化法の基盤とする.

4.3.1 供紙材

曲げ試験で用いる段ボールは、ライナ LB180、中芯 MC120 から成る B フルート⁴⁾を用いる. LB180 と MC120 は JIS P 3902 および JIS P 3904 に準拠している.

試験片はすべて同一の段ボールシートから切り出すことで作成する. Fig. 4-2 に曲げ試験 に用いる試験片と記号の定義を示す. 試験片の形状は Fig. 4-2(a)に示すように正方形であり, 試験片の縦軸方向の長さ L_{tp} , 横軸方向の長さ W_{tp} の寸法は試験機に合わせた. また, Fig. 4-2 (b)に試験片の厚さ(B フルート)の構造と記号の定義を示している. 試験片の厚さ D_{tp} は, Bフ ルートの表・裏ライナの厚さと中芯の高さで表される. また, 段ボールは温湿度の影響を 受け強度が変化することが知られている⁵⁾. そのため, 各試験で同一の温湿度条件となるよ う前処理を施した. Table. 4-1 に試験片の寸法, 段操率および温湿度条件をまとめて示す.

Fig. 4-2 Geometry of test peace for bending tests

Test piece length, L_{tp} (mm)	300
Test piece Width, $W_{tp}(mm)$	300
Test peace depth, D_{tp} (mm)	30
Corrugate medium Height, H_{cm} (mm)	2.8
Take up factor	1.4 (corrugate medium numbers $\pm 50/300$ mm)
Temperature	11 °C
Humidity	38 %

Table. 4-1 Dimensions of test peace for bending tests and temperature and humidity conditions

4.3.2 試験方法

段ボール試験片の曲げ試験から荷重 - 変位特性(load – displacement characteristics)を測定 する. Fig. 4-3 に曲げ試験を行うための万能試験機とその名称を示す. 万能試験機は, 試験 片を固定する治具(jig), 試験片(test piece)に荷重Pを与える圧子(indenter), 試験片の変位を測 定するセンサー(sensor)から成り立っている. Fig. 4-4 に荷重 - 変位特性を測定するための境 界条件を示す. 試験方法は, 試験片の両端を治具で上下から挟むことで完全に固定してい る. 万能試験機に固定された試験片の中央線上に圧子(indenter)を用いて圧縮測度10mm/min で鉛直下向きの荷重を与える. このとき, 試験片の中央線上に与える荷重は圧子の先端が 円形(球状)であり厳密には面荷重であるが, 試験片に対する接地面が小さいため, ここ では線荷重とする. 試験開始は, 圧子が試験片の表ライナに接した状態から荷重を増加さ せ, 段ボールの段が完全に潰れたときを試験終了の判定とする. このときの試験開始から 試験終了までの荷重一変位特性を試験片の下部中央に位置するセンサー(sensor)で測定する. 試験片の治具への取り付けや圧子の初期位置を試験片に接する位置まで調整するなど試験 準備段階で生じるばらつきが極力各試験間で小さくなるよう準備を行った.

段ボールは抄紙方向と垂直方向で異方性を示すことから,各目方向に対して測定を行う ことにする.具体的には抄紙方向に 10 試験,垂直方向に 10 試験それぞれ実施する.また, 測定後の試験片は段潰れや(段ボールを折り曲げるために段を潰すことで生じる)罫線が 入ることで初期の状態を維持することができない.そのため,各試験で試験片の初期状態 が同条件となるよう試験毎に新しい試験片を用いる.

Fig. 4-3 Universal testing machine for bending test

Fig. 4-4 Restraint condition and loading condition of test peace for bending tests

4.3.3 試験結果

曲げ試験を実施することで得られた抄紙方向と垂直方向の荷重一変位特性を目方向毎に まとめて Fig. 4-5 に示す. Fig. 4-5 より試験立ち上がり時では荷重と変位の関係は線形であ るが、荷重が増大するにともないその関係は非線形となり、更に荷重が増加すると変形量 は0を示しているのがわかる.これは、荷重が増加し続けると座屈荷重に至り、試験片が 座屈を起こした為である.実際には、試験片の荷重が加わる位置に罫線が入ることで座屈 に至る.

(a) Machine direction

Fig. 4-5 Load - displacement characters of test peace subjected to loading

抄紙方向と垂直方向の変位を比較すると、座屈荷重に到達するまでの変位が抄紙方向で 大きいことがわかる.これは、段ボールの目方向による力学的特性に関係しており、抄紙 方向(MD)は垂直方向(CD)に比べ曲げ強度が高いことを示している.

Fig. 4-5 で示した荷重-変位特性は各測定でばらつきが生じている. この各測定間のばら つきは線形領域で小さいが,非線形領域では徐々に大きくなっていることがわかる. この ばらつきに関して, 圧子の初期位置や試験片の固定など人為的要因によるばらつきとセン サーの分解能,サンプリングレートといった試験機の性能に依存するばらつきが考えられ る. しかしながら,各測定間のばらつきは測定が開始された初期段階から生じていること を考慮すると、ばらつきの主な要因は人為的なばらつきであると考えられる.

本研究では Fig. 4-5 に示した測定結果のうち,弾性領域の一部である荷重値が 5N から 10N までを調整済み弾性係数を用いた数値解析の議論の対象とする.

4.4 均質化モデル

両面段ボールを対象に均質化法に基づいたミクロモデルおよびマクロモデルについて述べる.具体的には,前節で示した試験片を対象として,段の1周期をモデル化したミクロ モデルと曲げ試験と同様となる境界条件を設定したマクロモデルを作成する.

(a) ミクロモデル

両面段ボールの中芯形状は、表ライナと裏ライナとの間で周期性を有する。この中芯形 状の周期性のうち、1周期にあたる1つの段をユニットセル(ミクロモデル)とする. ここで は、試験片で用いた B-flute を対象にモデル化を行う. Fig. 4-6 に、要素分割を行ったユニ ットセルと記号の定義を示す.また,Table. 4-2 にはユニットセルの寸法を示している.実 際の段ボールの中芯は製造工程に依存し各段で不均一な形状となることが知られている ⁶⁷⁾. このような不均一な中芯形状を,数値解析では正弦波で近似してモデル化⁸¹⁰している.そ のため、中芯形状のモデル化においては同様に正弦波とした.また、中芯とライナとの接 合部では、接着の際に用いられる糊が凝固することで残留応力が残ると考えられる。しか し、そのような残留応力をミクロモデルに組み込むといったモデル化は行わずに、中芯の 波形状の段頂とライナが接点で結合されているとする.材料の物性値については、川島ら の既存の研究 11)においては各原紙で物性値を同定しているが、それらを用いて段ボール全 体を解析した場合に測定値と有意な差が生じていることから、本研究では、段ボールの曲 げ特性に合うように物性値(調整済み弾性係数)を同定する. Table. 4-3 に、材料の定義を 示す. 両面段ボールは, 表ライナ(outer liner)と裏ライナ(inner liner)の2枚のライナが存在す るが、これらのライナは厚さや材質に変わりはないため同一材料として取り扱うことにす る. Table, 4-4 には、節点数および要素数を示す、節点数と要素数は実用的な解析時間で行 える総数を目標としつつ、要素分割の増減により解析結果に変わりがないことを確認した 上で設定した.ポアソン比は川島ら¹²の値を用いた.また,このユニットセルを通じてマ クロ解析を行なうために必要となる等価物性値を算出する.

Fig. 4-6 Unit cell for modeling one of flutes in Corrugate cardboard

Length of unit cell (mm), L_{uc}	6.0
Width of unit cell (mm), W_{uc}	6.0
Thickness of unit cell (mm), T_{uc}	3.0

Table. 4-2 Dimensions of unit cell

Table. 4-3 Definition of materials for unit cell

Materials number.1	Outer liner and Inner liner
Poisson's ratio (Materials number.1)	0.3
Materials number.2	Corrugated medium
Poisson's ratio (Materials number.2)	0.3

Table. 4-4 Element deposition for unit cell

Number of nodes in unit cell	6099
Number of elements in unit cell	2973

(b) マクロモデル

マクロモデルでは 4.3 節で示した曲げ試験を取り上げる.要素分割を行ったマクロモデルの記号の定義を Fig. 4-7 に示す.また, Table. 4-5 にマクロモデルの寸法を示す.マクロモデルルは試験片と同じ寸法でソリッド要素を用いて作成した.Table. 4-6 にはマクロモデルの節

点数と要素数を示している.マクロモデルの節点数と要素数は,ユニットセルと同様に実 用的な解析時間で行える総数を目標としつつ,要素分割の増減により解析結果に変わりが ないことを確認した上で設定した.

曲げ試験では抄紙方向および垂直方向に対して測定を行ったことから、マクロモデルに おいても抄紙方向および垂直方向に対して解析を行うために2通りの境界条件を設定する. 試験片の目方向は、ミクロモデルの軸方向を考慮しx軸を抄紙方向、y軸を垂直方向として 区別している.マクロモデルの境界条件としては、治具による試験片の固定をマクロモデ ルの側面を完全拘束することで表す.また、圧子による荷重は、圧子の先端が球状である ことから点荷重とする.具体的には、Fig. 4-8 (1)、(2)に示す通りである.Fig. 4-8(1)より抄 紙方向の境界条件では、C₁およびC₂の側面を拘束し、中央線上に沿って点荷重を与える.一 方、Fig. 4-8(2)より垂直方向の境界条件では、C₃およびC₄の側面を拘束し、中央線に沿って 点荷重を与える.この2通りの境界条件から抄氏方向と垂直方向の変位を解析する.

物性値にはミクロモデルから得られた等価物性値を適用する.

Fig. 4-7 Macro model of Test peace

Table. 4-5 Dimensions for macro model

Length of macro model, L_{mm} (mm)	250
Width of macro model, W_{mm} (mm)	250
Thickness of macro model, T_{mm} (mm)	3

Table.4-6 Element deposition for macro model

Nodes	3019
Elements	1492

Fig. 4-8 Restraint condition and loading condition macro model

4.5 調整済み弾性係数の算出

4.5.1 目標変位と数値解析

抄紙方向と垂直方向の荷重-変位特性は荷重と変位の直接的な関係をもつが,各測定値 でばらつきを伴っている.このような各試験値でばらつきを伴う処理において,その誤差 の二乗和を最小にすることで最も確からしい関係式を求める.この関係は最小二乗法によ り回帰直線として次式により求めることができる.

$$y = ax + b \tag{4.1}$$

ここで, yは目的変数, xは説明変数である. aは切片, bは傾きであり, 次式から求めることができる.

$$a = \frac{\sum_{n=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{n=1}^{n} (x_i - \bar{x})^2}$$
(4.2)

$$b = \bar{y} - a\bar{x} \tag{4.3}$$

nは測定値のデータ総数, x_i は測定値の荷重, y_i は測定値の変位, \bar{x} と \bar{y} は荷重値と変位値の 平均値である.これを試験値に適応すると Fig. 4-9 のようになる.

Fig. 4-9 Regression lines and observed values.

抄紙方向の目標変位 u_t^{MD} および垂直方向の目標変位 u_t^{CD} と均質化法による解析結果の変位 が等しい値を取る弾性係数を得ることができれば、両面段ボールに対して均質化法を適用 できる.そこで、両面段ボールの測定値に基づいた抄紙方向の目標変位 u_t^{MD} および垂直方向 の目標変位 u_t^{MD} と均質化法による抄紙方向を対象とした変位の解析結果 u_r^{MD} と垂直方向を 対象とした変位の解析結果 u_r^{CD} が次式の関係となることを目標とする.

$$u_t^{MD} \approx u_r^{MD} \tag{4.4}$$

$$u_t^{CD} \approx u_r^{CD} \tag{4.5}$$

調整済み弾性係数は、上式の関係を満たすような弾性係数を求める.そのため、ライナと 中芯の弾性係数を変数として、目標変位と均質化法の解析結果が上式を満足するように、 Fig. 4-10 示した格子点を用いたグリッドサーチによる探索を行う.

Fig. 4-10 Grid search

4.5.2 応答局面法による調整済み弾性係数の算出

前節で行ったグリットサーチによる抄氏方向と垂直方向の解析結果をサンプリングデー タとして、応答局面法(Response Surface Methodology)¹³⁾を用いて近似関数を生成する.応答 局面モデルは、n個の説明変数を x_i^{Res} (i = 1, 2, ..., n)、目的変数を y^{Res} として近似関数を作成 できる.

$$y^{Res} = f(x_1^{Res}, x_2^{Res}, x_i^{Res}) + \varepsilon^{Res}$$

$$(4.6)$$

ここで、 ϵ^{Res} は誤差である. Fig. 4-11 に抄紙方向および垂直方向の弾性係数-変位の応答曲 面を示す. Fig. 4-11 はグリッドサーチ全ての解析結果をサンプリングデータとして応答曲面 を作成している. 段ボールのライナは、平面であり中芯よりも強度が高いため、中芯の弾 性係数 e_m とライナの弾性係数 e_l が $e_l > e_m$ という関係にある. また、抄紙方向および垂直方 向の変位はライナの弾性係数 e_l と中芯の弾性係数 e_m の増加に伴い変形が小さくなっている のがわかる

Liner [MPa]

(a)Machine direction

Fig. 4-11 Elastic modulus - displacement response surface

調整済み弾性係数を算出するにあたり,抄紙方向と垂直方向の応答曲面はライナと中芯の 弾性係数に応じて変位が相応に変化しており,抄紙方向の変位の勾配をΔU^{MD},垂直方向の 変位の勾配をΔU^{CD}とすると次式の関係となる.

$$\Delta U^{MD} < \Delta U^{CD} \tag{4.7}$$

この抄紙方向の変位勾配ΔU^{MD}と垂直方向の変位勾配ΔU^{CD}の差を利用すれば, 抄紙方向の応答曲面と垂直方向の応答曲面は座標軸上で交点をもつ.この交点座標は応答曲面の重ね合

わせから容易に求めることができる. Fig. 4-12 に抄紙方向と垂直方向の応答曲面から求めた 調整済み弾性係数の座標を示す.尚, Fig. 4-12 では,抄紙方向と垂直方向の応答曲面を重ね 合わせた断面を示している.調整済み弾性係数はライナと中芯の値を比較するとライナの 方が中芯より大きい値となる.これは,段ボールのライナと中芯の剛性と同じ関係となっ ている.を比較するとライナの方が中芯より大きい値となる関係であるが,調整済み弾性 係数のライナと中芯の値も同様の関係となっている.調整済み弾性係数は段ボールの弾性 係数と同様にライナの弾性係数が大きく,中芯の弾性係数が小さいという関係を示してい る.目標変位を 20N 時の変位としているが,弾性領域であるため,目標変位に対してどこ の値を取ったとしても交点座標は存在する.

このような一連の手続きにより得られた調整済み弾性係数は、両面段ボールに対して均 質化法を適用することを目的に算出した値である.そのため、実在するライナおよび中芯 の剛性と調整済み弾性係数の値は異なる.

Fig. 4-12 Coordinate axis of adjusted elastic modulus

4.5.3 数值解析

調整済み弾性係数の妥当性を具体的に示すため、4.4節に示した段ボールの均質化モデル に調整済み弾性係数を用いた解析と測定値の比較を行なう.

(1) 解析条件

解析に用いるモデルは 4.4 節に用いたユニットセルおよびマクロモデルをここでも用いる. ユニットセルの弾性係数には調整済み弾性係数を与える. 一方でマクロモデルでは, 議論の対象とした測定値の弾性領域に含まれる荷重 *P=5N*, 10*N*, 15*N*, 20*N* の 5 ケースを荷重

条件として与え、抄紙方向および垂直方向の2方向に対して解析を行なう.

(2) 解析結果

本提案による解析精度の比較を行うため,3章3.5.3節で示した既存の解析例を参照する. Fig. 4-14 から Fig. 4-16 には、中川ら¹⁴⁾、川島ら¹¹⁾が行った段ボールシートの荷重-変位特 性を示す. Fig. 4-13 より抄紙方向および垂直方向の解析結果は、いずれの荷重条件において も測定値と概ね一致していることがわかる.一方で、Fig. 4-14 から Fig. 4-16 にかけて示す 中川ら、川島らが行った解析と Fig. 4-13 の本提案手法による解析結果を比較しても、本提 案手法の方が精度良く解析できていることから本提案の有効性が確認できる.

Fig. 4-13 Comparison homogenization method and observation values and regression line

Fig. 4-14 Elements on larger scale of comparison between calculated (shell element model) and found values of compressive strength by ring crush test¹³⁾

Displacement (mm)

Fig. 4-15 Elements on larger scale of Comparison between calculated (solid model) and found values of compressive strength by flat crush test¹⁴⁾

Fig. 4-16 Comparison between calculated and found value of bending strength by bending test¹¹

調整済み弾性係数は、目標変位に基づき均質化法を利用して逆解析的に求めることで得 られた値である.この目標変位はライナや中芯、および段ボールの強度を保つ糊の影響等 を含んだ段ボール構造体としての曲げ剛性である.そのため、目標変位に合わせるように して得られた調整済み弾性係数は、段ボール構造体の剛性を考慮した値として算出される. このような方法を取ることで、均質化法のモデル化において糊の残留応力をモデル化する などの特別な技法を用いることなく解析精度を維持して解析を行なうことが示された.

本節での議論は,解析結果を決定値として取り扱っている.しかしながら,調整済み弾 性係数は測定値に基づき得られた値である.そのため,主に人的要因における測定値のば らつきなどが含まれている.解析結果においてこのようなばらつきを考慮することは,解 析精度の信頼性向上へと繋がる.そこで,次章以降,解析結果に含まれるばらつき等の影 響を考慮した確率的評価法を提案する.

94

4.6 まとめ

本章では、実験と数値シミュレーションの融合による物性値の推定方法の詳細とその有 効性について段ボールを例に示した.特に解析が困難な両面段ボールに関して以下の知見 を得た.

- ① 荷重 変位特性に目標変位を定めることで、ユニットセルにおいて中芯とライナとの 貼り合せる糊の影響に対する残留応力のモデル化を必要としなくて済むと考えられる. 段ボールの構造はライナと中芯を貼り合せることで成り立つが、この貼り合せの際に 糊を利用するため、糊が凝固することで残留応力が残る.目標変位は曲げ試験の測定 値に基づき定めた値であり段ボール構造体としての剛性を持つ.そのため、この目標 変位に合うように均質化法による解析を行なうことで、モデル化、すなわちユニット セルにおいて中芯とライナとを貼り合せる糊の影響を省略できる.
- ② ユニットセルの軸方向を考慮してマクロモデルに抄紙方向と垂直方向の境界条件を設定し、均質化法による解析を行なった.解析結果の変位は抄紙方向が小さく、垂直方向が大きいことが示された.これは実際の曲げ試験から得られた段ボールの力学的特性と一致しており、ユニットセルの軸方向を考慮してマクロモデルに抄紙方向と垂直方向の境界条件から解析を行なうことが可能であることが確認できた.
- ③ 段ボールの異方性を調整済み弾性係数のライナと中芯に合わせ込むために、応答局面の重ね合わせを利用した.具体的には、均質化法による解析結果に基づき作成された応答曲面の抄紙方向の変位の勾配ΔU^{MD}と垂直方向の変位の勾配ΔU^{CD}の差を利用して応答曲面の重ね合わせにより座標軸上の交点から求めた.
- ④ 両面段ボールを対象に調整済み弾性係数を用いて数値解析を行なった結果と測定値と を比較することで調整済み弾性係数の妥当性を確認した.抄紙方向および垂直方向で 共に回帰直線および測定値と概ね一致している結果が得られた.また,既存の研究で 行われた解析結果と比較し本提案の有用性を示した.

最後に,調整済み弾性係数について本章では決定値として扱っているが,実際には人的 要因による測定値のばらつきが含まれることを考察し,次章以降展開する確率的妥当性検 証の必要性を示した.

【第4章 参考文献】

- 高野直樹,座古勝,菊池昇,均質化法による単層波状コアサンドイッチ板の解析,日本材料学会, Vol. 44, No. 502, pp. 905-910 (1995)
- 2) Z. W. Wang and E. Y. Ping, Energy absorption properties of multi-layered corrugated paperboard in various ambient humidities, Materials and Design, Vol. 32, pp. 3476-3485 (2011)
- 3) 奥村大, 大野信忠, 小野田孝行, 曽我将孝, 弾性積層段ボールの圧縮強度に微視構造の及 ぼす影響の均質化解析, 計算数理工学論文集, Vol. 12, No. 18-121212 (2012)
- 4) 日本工業規格 JIS Z 1516 外装用段ボール
- 5) 手島正,小林兼弘,段ボール箱の圧縮強さに及ぼす温湿度の影響,愛知工業技術センター報告,No. 18, pp. 65-69 (1982)
- E. M. Biancolini and C. Britti, Numerical and Experimental Investigation of the Strength of Corrugated Board Packages, Packaging Technology and Science, Vol. 16, No. 2, pp. 47-60 (2003)
- Q. S. Xia, M. C. Boyce and D. M. Parks, A Constitutive Model for the Anisotropic Elastic-Plastic Deformation of Paper and Paperboard, International Journal of Solids and Structures, Vol. 39, No. 2, pp. 4053-4071 (2002)
- A. Harrysson and M. Ristinmaa, Large strain elasto-plastic model of paper and corrugated board, International Journal of Solids and Structures, Vol. 45, Issue 11-12, pp. 3334-3352 (2008)
- 9) B. K. Thakkar, L. G. J. Gooren, R. H. J. Peerlings and M. G. D. Geers, Experimental and numerical investigation of creasing in corrugated paperboard, Philosophical Magazine, Vol. 88, Issue 28-29, pp. 3299-3310 (2008)
- R. Haj-Ali, J. Choi, B. S. Wei, R. Popil and M. Schaepe, Refined nonlinear finite element methods for corrugated board packages, Composite structure, Vol. 16, Issue 4, pp. 321-333 (2003)
- 11) 川島義隆, 西村太志, 手塚明, 立体紙製品の構造解析に関する研究, 岐阜県生産情報技術研究所研究報告 第2号, pp. 29-34 (2000)
- 12) 川島義隆, 横山貴広, 岩田靖三, 野口哲司,原田匡人, 梅津康義, 松井和己, 手塚明, 立体 紙製品の構造解析に関する研究(第 4 報), 岐阜県生産情報技術研究所報告(第 5 号) (2003)
- R. H. Myers, D. C. Montgomery and C. M, Anderson-Cook, Response surface methodology: Process and product optimization using designed experiments 3rd Edition, John Wiley and Sons (2009)
- 14) 中川幸臣, 丹羽一邦, 包装設計の FEM 解析における段ボールモデル化の検討,日本包装

学会誌, Vol. 14. No. 5, pp.327-327 (2005)

<第5章 主な表記>

- B:系列間分布
- L:95%確率における下限値
- **Â**:マルコフ連鎖モンテカルロ法の収束判定
- $T_n: 学習損失$
- U:95%確率における上限値
- V_n:汎関数分散
- ₩:系列内分散
- d:観測データ
- n:観測データ数
- *p*(λ): 超事前分布
- s:事後分布の標準偏差
- x:ガンマ分布の最適化における観測データ
- x_{MD}:抄紙方向の観測データ
- x_{CD}:垂直方向の観測データ
- Ψ(α):ディガンマ関数
- |Σ|: 共分散行列Σの行列式
- **Σ**₀⁻¹:事前分布の共分散行列
- **θ**₀:事前分布の平均値
- α:形状パラメータ
- **â**:形状パラメータαの最尤推定値
- β:尺度パラメータ
- $\hat{\beta}$: 尺度パラメータ β に関する最尤推定値
- λ:未知のパラメータ
- ν:パラメータ
- **µ**:事後分布の平均
- σ^2 : ハイパーパラメータ

第5章 ベイズ推定を用いた確率的妥当性評価法

5.1はじめに

本章では、物性値の推定を、決定値ではなく確率分布で表し、その分布から数値シミュ レーション結果の妥当性を評価する手法を提案する.具体的には、前章で提案した、実験 と数値シミュレーションの融合による物性値の推定方法に対してベイズ推定を用いること で試験値のばらつきに起因する物性値のばらつきを確率分布として表し、ベイズ推定の確 信区間から数値シミュレーションの解の妥当性を評価する.その具体例として前章同様に 両面段ボールの解析を用いる.

数値解析には、モデル化誤差や材料特性のばらつきなどが要因で解析結果に誤差が伴う. このような誤差を観測データから推定すると共に明示化することができれば、解析結果の 妥当性を定量的に評価できる.ここで述べる確率的妥当性評価法とは、ベイズ推定を用い て調整済み弾性係数に含まれるばらつきの事後分布を推定することに加え、事後分布によ る確信区間の上下限値をパラメータに用いて数値解析を行うことで、解析結果の妥当性を 定量的に表す一連のことを示す.このようにして、解析結果のばらつきを定量的に評価す ることは、数値解析を有効に活用するための信頼性向上へと繋がる.

ベイズ推定は、事前分布に尤度関数を乗ずることで事後分布を求めることができる.し かしながら、事前分布は、経験的な立場から設定することが多い.そのため、適切な事前 分布の設定が可能であれば、少ない観測データからでも比較的早く収束し、且つ精度良く 推定を行うことが可能となる.一方で、解析者が推定の対象パラメータに対して、根拠の ない事前分布の設定は、推定結果の信頼性において意味を成さないことになる.そのため、 推定の対象となるパラメータに対して情報がない場合には、無情報事前分布を設定すると いった方法が取られる.このように、事前分布を適切に利用することで少数の観測データ からでも推定が可能であることから、多数の観測データを取得するために、試験を繰り返 し行う必要がある段ボールには適していると言える.しかしながら、段ボールの物性値等 を取り扱う上で情報は乏しく、事前分布に対して無情報事前分布を設定しなければならな いものと考えられる.そのため、本研究では、観測データから事前分布を推定するために、 事前分布に対する事前分布を読けることで、ベイズモデルを階層ベイズモデルに拡張し、 事前分布に対する事前分布を情報量基準により最適化する方法を提案する.この提案によ り調整済み弾性係数のばらつきを精度良く推定できるものと考えられる.

解析結果の妥当性評価に対しては、これまで解析結果と測定値とを比較するに留まって おり、解析結果のばらつきを定量的に取り扱うことが困難であった.このため、(調整済み 弾性係数のばらつきを対象とした)事後分布の確信区間から上限・下限の値をパラメータ として用いた数値解析を示し,解析結果の妥当性を明確化すると共に提案法の有用性を示 す.

尚,本章では,調整済み弾性係数のばらつきに関して議論を行っているため,4章で議論 した調整済み弾性係数を算出するまでの過程や均質化法を用いた解析結果などを適宜参照 する.

5.2 ベイズ推定による定量的評価の意味

5.2.1 確率的評価法の目的

頻度統計学が意味する確率とは、例えば、「サイコロを振って1の目が出る確率」という ような不確実な現象が発生する頻度を表している.一般化線形モデル(generalized linear model)¹⁻²⁾の推定などに用いられる最尤法は特定の「真の値」が存在することを前提として成 り立っている.この最尤法³⁾は、データに対する当てはまりの良さが最大となる値を真の値 に最も近いパラメータとして推定する方法である.これは、尤度が最大となるパラメータ の値を特定することに対応している.しかしながら、最尤法は観測データの生成される背 景が既知であることや、多数の観測データを必要とするといった制限がある.一方で、ベ イズ統計学は、推定の対象となるパラメータの見込みの大きさを解析者の主観で表現する という主観確率に基づく推定法である.このような主観確率の導入によりベイズ統計学で は、最尤法に見受けられる制限もない.以上のことから、ベイズ推定は統計的に解析結果 のばらつきを評価するには適した推定法と言える.そのため、本研究では、ベイズ推定を 用いて合理理的に調整済み弾性係数のばらつきを観測データから推定する.提案するベイ ズ推定を用いた確率的妥当性検証の目的は、以下の意味をもつ.

恣意性の排除

② 高精度推定

③ 数值解析の定量的評価

①では、ベイズ推定は理論形式としての合理性や統計的決定理論における許容性など理論 的に優れた性質を持つ.しかしながら、事前分布の設定次第では、恣意性が問題となるこ ともなる.このような恣意性の問題は、事前分布の設定に対する制限がなく、解析者の主 観によって自由に設定することが可能であるために生じる.このことにより、解析者が優 位となるような推定結果を故意的に操作することもできる.

②では,解析者の経験や類似データから導き出された事前分布の設定次第では,少ない更 新回数で収束し,且つ高精度の推定を可能とする.しかしながら,推定に有益となる事前 分布の設定が常に行えるとは言い難い.そのため,情報がない場合には無情報事前分布を 設定することで,観測データから客観的な推論が可能である.一方で,このような無情報 事前分布の設定であれば,従来の頻度統計学にとって替わるほどのメリットはない. ③では,解析結果の妥当性検証は対象となる測定値と比較することに留まっており,決定 論的に取り扱ってきた.しかしながら,実際の解析結果は材料物性値や解析対象のモデル 化などの要因によりばらつきを伴っている.そのため,このような数値解析に含まれるば らつきを考慮した解析結果の妥当性評価法が必要となる.

5.2.2 階層ベイズモデルによる恣意性の排除

ベイズ推定⁴⁵⁾は、式(5.1)に示すベイズの定理を用いて、対象とするパラメータの事前分 布を観測データの確率的性質を満たすようにベイズ更新を繰り返すことでパラメータの事 後分布を得る.

$$p(\theta|d) \propto f(d|\theta)p(\theta) \tag{5.1}$$

ここで、 $p(\theta)$ は推定対象となるパラメータ θ の事前分布、dは観測データを表している.事後分布 $p(\theta|d)$ は、観測データの尤度関数 $f(d|\theta)$ を事前分布に乗じることで求めることができる.

式(5.1)のベイズの定理において、パラメータθがさらに未知のパラメータνの関数となる ことで、事前分布p(θ)はパラメータνの条件付確率分布となる.そのためには、事象A、Bを 用いて次式に示す条件付確率分布の公式を用いる.

$$p(A,B) = p(A|B)p(B)$$
(5.2)

式(5.2)の条件付確率分布の公式を用いることで、式(5.1)のベイズの定理を次式のように展開 することができる.

$$p(\theta, \lambda | d) = p(d | \theta) p(\theta | \lambda) p(\lambda)$$
(5.3)

ここで、事前分布 $p(\theta|\lambda)$ は未知のパラメータ λ が与えられたときのパラメータ θ の事前分布 を意味する条件付き確率分布となる.また、 $p(\lambda)$ は超事前分布であり、事前分布 $p(\theta|\lambda)$ は超 事前分布 $p(\lambda)$ によって、その分布形状が制御される.そのため、 $p(\theta|\lambda)p(\lambda)$ は、事前分布 $p(\theta|\lambda)$ と超事前分布 $p(\lambda)$ との階層構造となることから階層事前分布(hierarchical prior distribution)と呼ばれる.また、階層事前分布 $p(\theta|\lambda)p(\lambda)$ のうち未知のパラメータ λ は、事前 分布 $p(\theta|\lambda)$ を制御する事前分布であることからハイパーパラメータ(hyper-parameter)[®]と呼 ばれる.すなわち、パラメータ θ は、未知のパラメータ λ によって規定される確率密度関数 によって生成されると仮定できる.このように、事前分布の上層部に超事前分布 $p(\lambda)$ を設け るといった構造を持つベイズモデルを階層ベイズモデル(hierarchical Bayes model)⁷⁰と呼ぶ. 階層ベイズモデルは、パラメータ θ の階層事前分布 $p(\theta|\lambda)$ がハイパーパラメータ λ によって 制御されるため、階層事前分布 $p(\theta|\lambda)p(\lambda)$ の事後分布から事前分布形状を決定するというア プローチを取ることができる.すなわち、階層ベイズモデルを用いることにより、事前分 布形状を決定するパラメータを観測データから推定することで、従来のベイズ統計学の問 題点であった事前分布の客観性を確保しながら、多次元のパラメータの妥当な推定値を得 ることができる.

以降,調整済み弾性係数のばらつきを対象として,階層ベイズモデルを用いた確率的評価法を具体的に述べる.本研究では確率的評価法のうちハイパーパラメータに対して情報 量基準を用いた最適化を目的の一つとしている.

5.2.3 情報量基準 WAIC によるハイパーパラメータの最適化

事前分布に対して解析者がもつ過去の経験や類似データといった情報量の多さは、事後 分布への収束および推定精度に影響を与える.そのため、推定対象のパラメータに応じて、 有効な情報が取り出せるように事前分布を選択する必要がある.ベイズ推定では、パラメ ータ対して解析者の情報がない場合には、無情報事前分布を設定する必要がある.しかし ながら、無情報事前分布の設定は、観測データの情報のみを利用するという点で最尤推定 法によるパラメータの推定と変わりのないことを意味している.そのため、事前分布の選 択においては、可能な限り解析者の経験や類似データに基づき推定対象のパラメータに対 して有用な予測を立てることが望ましい.このような最適な事前分布を選択するための評 価法として情報量規準⁸⁹がある.情報量規準を用いることで、事前分布p(θ|λ)を決定する ハイパーパラメータλの分布形状を最尤法により観測データから選択することができる.

情報量規準は、赤池情報量規準(Akaike information criterion, AIC)¹⁰⁻¹¹⁾を始め、これまで にいくつか提案¹²⁻¹³⁾されている.その中で、本研究では、広く使える情報量規準(widely applicable information criterion, WAIC)¹⁴⁻¹⁵⁾を活用する.WAIC は AIC を一般化した情報量規 準であり、分布形状の制限はない.情報量規準 WAIC は真の分布と予測分布のカルバック・ ライブラー情報量¹⁶⁾である汎化誤差を用いて次式のように定義できる.

$$WAIC = T_n + \frac{V_n}{n} \tag{5.4}$$

ここで、T_nは学習損失、V_nは汎関数分散であり、それぞれ次式で与えられる.

$$T_n = -\frac{1}{n} \sum_{i=1}^n \log p(x_i | X)$$
(5.5)

$$V_n = \sum_{i=1}^n \left\{ E_{\boldsymbol{\theta}} \left[\left(\log p \left(X_i | \boldsymbol{\theta} \right) \right)^2 \right] - E_{\boldsymbol{\theta}} [\log p(X_i | \boldsymbol{\theta})]^2 \right\}$$
(5.6)

ここで、 $\log p(x_i|X)$ は予測分布であり、 $p(x_i|\theta)$ はパラメトリックモデルである. さらに、 $E_{\theta}[\cdot]$ はパラメータ θ の事後分布による平均を表している. また、学習損失 T_n は観測データにおける推定の誤差、汎関数分散 V_n はデータを表す確率分布の分散であり、パラメータを推定することで計算可能な量である. そのため、情報量規準 WAIC は確率モデルと観測データを利用して、真の分布が未知であっても汎化誤差と平均値が一致する値を求めることができる. これは統計的推測において確率モデルや事前分布の良さが評価できることを意味している.

5.2.4 数値解析の信頼性評価

数値解析の妥当性を評価する方法としては、これまで測定値と解析結果の整合性を取る ことで確認を行ってきた.しかしながら、実際の解析結果は、モデル化誤差や材料特性の ばらつきなどが要因で、ばらつきを伴っている.このような解析結果に含まれるばらつき を解析結果と伴に明確化することは、解析精度の保証へ繋がる.その具体的な方法は、調 整済み弾性係数におけるばらつきの事後分布から計算した確信区間の値を均質化法のパラ メータに活用することで行われる.

ベイズ推定は、区間推定として $(1 - \alpha) \times 100\%$ 確信区間を定義している. $(1 - \alpha) \times 100\%$ 確信区間は、上限 $\alpha/2$ 分位数と下限 $1 - \alpha/2$ 分位数で表せられる区間に真値が存在すること を意味する.すなわち、調整済み弾性係数の事後分布から計算された確信区間の上限値お よび下限値に含まれる区間は、妥当性の保証できるパラメータと考えることができる.こ のように、ベイズ推定における区間推定を利用することでパラメータに信頼性の幅を持た せることが可能となり、この確信区間に含まれる値を均質化法のパラメータに用いること で、解析結果の信頼性を保証できる区間を示すことが可能となる.そこで、本研究では解 析結果の定量的評価を目的として、調整済み弾性係数の事後分布から計算した上限 $\alpha/2$ と下
限1-α/2の値を均質化法のパラメータに利用することで,解析結果の妥当性の保証できる 範囲を明示的に示す.

5.3 調整済み弾性係数のばらつき評価

ベイズ推定を用いて調整済み弾性係数のばらつきを推定する.ここでは、調整済み弾性 係数を求める際に用いた応答局面からなる確率モデルを構築し、情報量規準 WAIC を用い た事前分布の最適化を通じて推定された事後分布の評価を行う.

5.3.1 調整済み弾性係数推定モデル

調整済み弾性係数は、抄紙方向と垂直方向における応答局面の交点の座標から決定された値であ る.この応答局面は、測定値のばらつきや解析結果をサンプリング点としたときの近似式との誤差 など複数の要因が存在することで、確率的なばらつきを伴う.ここでは、調整済み弾性係数のばら つきを推定するための階層ベイズモデルを抄紙方向と垂直方向の応答局面を利用することで構築 する.

応答局面は関数に関係なく,近似関数を求めて最適化に利用する方法である.この内,線形関数 や線形化変換可能な関数は、最小二乗法を用いることで回帰モデルとして統計的に評価することが 可能となる.ベイズ推定で回帰モデルの評価を行う場合には、回帰係数を定数として扱うのではな く、分布として扱うことで回帰直線のばらつきを評価¹⁷することができる.本研究では、応答局面 を回帰モデルとして扱うような方法は用いず、応答局面が確率的にばらつきをもつ応答局面モデル を考える.

応答局面モデルでは、抄紙方向および垂直方向の応答局面が次式に示す多変量正規分布に従う.

$$p(\boldsymbol{x}_{MD}|\boldsymbol{\theta}_{MD}) = N(\boldsymbol{x}_{MD}|\boldsymbol{\theta}_{MD}, \boldsymbol{\Sigma}_{MD})$$

$$= \frac{1}{(2\pi)^{\frac{1}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} exp\left(-\frac{1}{2}(\boldsymbol{x}_{MD} - \boldsymbol{\theta}_{MD})^{T}\boldsymbol{\Sigma}_{MD}^{-1}(\boldsymbol{x}_{MD} - \boldsymbol{\theta}_{MD})\right)$$
(5.7)

$$p(\boldsymbol{x}_{CD}|\boldsymbol{\theta}_{CD}) = N(\boldsymbol{x}_{CD}|\boldsymbol{\theta}_{CD}, \boldsymbol{\Sigma}_{CD})$$

$$= \frac{1}{(2\pi)^{\frac{1}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} exp\left(-\frac{1}{2}(\boldsymbol{x}_{CD} - \boldsymbol{\theta}_{CD})^{T}\boldsymbol{\Sigma}_{CD}^{-1}(\boldsymbol{x}_{CD} - \boldsymbol{\theta}_{CD})\right)$$
(5.8)

ここで、下付き文字は、段ボールの(抄紙方向(machine direction, MD)と垂直方向(cross direction, CD)の向きを表す)目方向であり、式(5.7)は抄紙方向、式(5.8)は垂直方向を示している. Tは転置、 θ は均質化解析による変位 - 弾性係数応答の各サンプル点の集合からな

るベクトル, $|\Sigma|$ は共分散行列 Σ の行列式であり,変位 - 弾性係数応答のサンプル点から求められる.また,尤度関数 $p(\mathbf{x}|\boldsymbol{\theta})$ は,式(5.7)と式(5.8)を乗じたものとする.

調整済み弾性係数に関する事前分布π(θ|λ)に対しても次式の多変量正規分布を仮定する.

$$p(\boldsymbol{\theta}|\boldsymbol{\lambda}) = N(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{\Sigma}_{0}, \sigma^{2}) = \frac{1}{(2\pi\sigma^{2})^{\frac{1}{2}} |\boldsymbol{\Sigma}_{0}^{-1}|^{\frac{1}{2}}} \times exp\left(-\frac{1}{2\sigma^{2}}(\boldsymbol{x}-\boldsymbol{\theta}_{0})^{T}\boldsymbol{\Sigma}_{0}^{-1}(\boldsymbol{x}-\boldsymbol{\theta}_{0})\right)$$
(5.9)

式(5.9)の事前分布のパラメータにおいては, 調整済み弾性係数のばらつきに関する情報を設定する. 具体的には, 平均 θ_0 に対しては, 第4章にて調整済み弾性係数を求めていることから既に求めた調整済み弾性係数の値を用いる. 一方で, 共分散行列 Σ_0^{-1} は未知とし, ハイパーパラメータ σ^2 を導入することで推定する. ハイパーパラメータ σ^2 は, 式(5.3)の階層ベイズモデルにおける $h(\lambda)$ に対応している. そのため, 事前分布の共分散行列 Σ_0^{-1} を推定するハイパーパラメータ σ^2 に対しては, 調整済み弾性係数に含まれるばらつきの一因である測定値のばらつきを試験機の測定精度としてモデル化する. ここでは, 試験機の測定精度を表す指標に, 式(5.10)の形状パラメータ α と尺度パラメータ β をパラメータにもつガンマ分布 $Ga(\alpha,\beta)$ を仮定している. 試験機の測定精度の指標は負の値を含まないことから, 確率密度分布が正の値のみをもつガンマ分布を採用した. また, このパラメータは, 零に近いほど測定精度が高いことを表す.

$$h(\lambda) \sim Ga(\alpha, \beta) \tag{5.10}$$

以上より,式(5.7),式(5.8),式(5.9)を式(5.3)の右辺に代入して計算した事後分布p(θ,λ|x)から調整 済み弾性係数のばらつきに対する評価を行う.尚,事後分布を推定するための計算には,後述する マルコフ連鎖モンテカルロ法を用いる.

5.3.2 情報量規準 WAIC を用いたハイパーパラメータの最適化

ハイパーパラメータの最適化を行うには、周辺尤度を最大化することで、情報量規準 WAICを最小化する必要がある.ここでは、周辺尤度を最大化するパラメータを点推定量と して求める.

測定精度の指標を規定するハイパーパラメータ $h(\lambda)$ には、ガンマ分布を定義している.このガンマ分布の確率密度関数(probability density function, pdf)は下記のように定義される.

$$p(x|\alpha,\beta) = \frac{x^{\alpha-1}}{\Gamma(\alpha)\beta^{\alpha}} exp\left(-\frac{\alpha}{\beta}\right)$$
(5.11)

観測データxが与えられたとき、式(5.11)の対数尤度関数は次式のように表される.

$$\log p(x|\alpha,\beta) = (\alpha-1)\sum_{i}\log x_{i} - n\log\Gamma(x) - n\alpha\log\beta - \frac{1}{\beta}\sum_{i}x_{i}$$
(5.12)

式(5.12)より、 β に関する最尤方程式を解くことで最尤推定値 $\hat{\beta}$ を得ることができる.

$$\hat{\beta} = \frac{\bar{x}}{\alpha} \tag{5.13}$$

ここで, *x*は観測データの平均である.式(5.12)に式(5.13)を代入することで,対数尤度関数 を次式に書き直すことができる.

$$\log p(x|\alpha, \hat{\beta}) = n(\alpha - 1)\overline{\log x} - n\log\Gamma(\alpha) - n\alpha\log\bar{x} + n\alpha\log\alpha - n\alpha$$
(5.14)

ここで、 $\log x$ は対数尤度の平均である.式(5.14)より、 α についての尤度方程式を解くことで最尤推定値 \hat{a} を得ることができる.従って、式(5.14)を最大化する α を数値的に求める.ここでは、最尤推定値 \hat{a} を求めるため局所近似最大化法¹⁸⁾を用いる.そのため、式(5.14)を下記に示す局所近似式で表す.

$$\log p(x|\alpha,\hat{\beta}) \approx c_0 + c_1\alpha + c_2\log(\alpha) \tag{5.15}$$

ただし、 c_0 は定数、 c_1 および c_2 は次式となる.

$$c_1 = p'(\alpha_0) - \frac{c_2}{\alpha_0}$$
(5.16)

$$c_2 = -\alpha_0^2 p''(\alpha_0)$$
 (5.17)

また,式(5.15)をg(α)と表し、微分することで下記の式を得る.

$$g'(\alpha) = c_1 + \frac{c_2}{\alpha} \tag{5.18}$$

$$g^{\prime\prime}(\alpha) = -\frac{c_2}{\alpha^2} \tag{5.19}$$

ここで,式(5.14)の対数尤度関数は上に極限を持つため $p''(\alpha) \leq 0$ の関係が成り立つ.従って, $c_2 > 0$ となり $g(\alpha)$ も同様に上に極限を持つ.すなわち, $g(\alpha)$ を最適化するには $g'(\alpha) = 0$ を 満たす α を次式により求める.

$$\alpha = -\frac{c_2}{c_1} \tag{5.20}$$

式(5.20)に式(5.16)と式(5.17)を代入して整理すると次式を得る.

$$\frac{1}{\alpha} = \frac{1}{\alpha_0} + \frac{p'(\alpha_0)}{\alpha_0^2 p''(\alpha_0)}$$
(5.21)

ここで、p'(a)および $p''(\alpha)$ について、式(5.14)の対数尤度関数における $\alpha \log \alpha$ に着目すると下に極限を持つため、 α_0 における接線は次式の関係を得る.

$$f(a) \ge (\log \alpha_0 + 1)(\alpha - \alpha_0) + \alpha_0$$
 (5.22)

式(5.14)に式(5.22)を代入すると対数尤度関数の下限は次式の関係で表される.

$$\log p\left(x \middle| \alpha, \hat{\beta}\right) \ge n(\alpha - 1) \overline{\log x} - n \log \Gamma(\alpha) - n\alpha \log \bar{x} + n\alpha_0 \log \alpha_0 + n(\alpha - \alpha_0) \log \alpha_0 - n\alpha_0$$
(5.23)

式(5.22)の下限が $d\alpha/dx = 0$ となる導関数 $p'(\alpha)$ および $p''(\alpha)$ は次式となる.

$$p'(\alpha) = \overline{\log x} - \Psi(\alpha) - \log \overline{x} + \log \alpha_0 \tag{5.24}$$

$$p''(\alpha) = -n\Psi'(\alpha) + \frac{n}{\alpha}$$
(5.25)

ここで、 $\Psi(\alpha)$ はディガンマ関数である.式(5.21)に式(5.24)と式(5.25)を代入して整理すると最尤推定値 \hat{a} を得るための更新式を得る.

$$\frac{1}{\hat{\alpha}} = \frac{1}{\alpha_0} + \frac{\overline{\log x} - \Psi(\alpha_0) - \log \bar{x} + \log \alpha_0}{\alpha_0^2 \left(\frac{1}{\alpha_0} - \Psi'(\alpha_0)\right)}$$
(5.26)

本研究では、一様なガンマ分布から更新されたαの推定値をα₀として、観測データxを用いて更新することで最尤推定値âの値を求めた.

5.3.3 事後分布の算出

階層ベイズモデルから事後分布を求めるために、マルコフ連鎖モンテカルロ法(Markov chain Monte Carlo method, MCMC)¹⁹⁻²¹⁾を用いる. MCMC は任意の確率分布からサンプルを取り出す方法の一つであり複雑なベイズモデルのパラメータ推定を行う際に用いられる手法である. ここでは、MCMC から求められた調整済み弾性係数に含まれるばらつきの事後分布について考察を行う.

(1) メトロポリス法

事後分布を計算する MCMC のアルゴリズムとして,メトロポリス法(Metropolis method)²²⁾を用いる. Fig. 5-1 にメトロポリス法のアルゴリズムを示す.

メトロポリス法は、現在の値が $\theta^{(t-1)}$ によって表される時に、次のステップの候補値 θ^* が 選択される確率を $q(\theta^*|\theta^{t-1})$ と定義している.この候補値 θ^* が選択させる確率に対して次式 が成り立つならば、遷移確率が等しいとしてメトロポリス法を用いることが可能となる.

$$q(\theta^*|\theta^{(t-1)}) = q(\theta^{(t-1)}|\theta^*)$$
(5.27)

メトロポリス法は,事前分布を設定し,*t* = 0における初期値の⁽⁰⁾をランダムに決定した後, 以下のようなアルゴリズムでランダムサンプリングを得ることができる.

- (1) 現在の値 $\theta^{(t-1)}$ から $q(\cdot | \theta^{(t-1)})$ として候補値 θ^* を発生させる.
- (2)(1)の候補値θ*に対し尤度p(D|θ*)を計算する.
- (3) 現在の値(t-1)と候補値(0*の事後分布の比αを次式から計算する.

$$\alpha = \frac{p(\theta^*|D)}{p(\theta^{(t-1)}|D)} = \frac{p(D|\theta^*)p(\theta^*)}{p(D|\theta^{(t-1)})p(\theta^{(t-1)})}$$
(5.28)

- (4) (3)で計算した確率 α により候補値を採用する. すなわち,一様乱数 $r \ge 0 \le r < 1$ で発 生させ確率 α と一様乱数rの値を比較することで次のステップ $\theta^{(t)}$ の値を決定する.
 - i) $r < \alpha$ の時には、候補値 θ^* を次のステップの値として採用する $(\theta^{(t)} = \theta^*)$.
 - ii) $r > \alpha$ の時には,現在の値 $\theta^{(t-1)}$ を次の値として採用する $(\theta^{(t)} = \theta^{(t-1)})$.
- (5)(1)から(4)を充分繰り返した後に、ランダムサンプリングが定常分布に収束するまでの 初期値に依存する期間を稼働検査期間(burn-in period)であるとして破棄し、この burn-in以降の事後分布からランダムサンプリングを得る

Fig. 5-1 MCMC (Metropolis method) algorithm

(2) 収束判定

MCMC では、サンプリングが定常分布へ収束しているかを判定する一つの指標として、 $\hat{R}^{23-25)}$ を用いている.ここでは、Gelman & Rubin で提案された potential scale reduction²³⁾を用 いて収束判定を行う.事後分布を正規分布で仮定すると \hat{R} は系列間分布B(between-chain variance)と系列内分散W(within-chain variance)により以下のように表される.

$$\hat{R} = \sqrt{\frac{n-1}{n} + \frac{1}{n}\frac{B}{W}}$$
(5.29)

Rは、サンプルが事後分布から生成されることに加え、サンプルサイズが大きいといった条件を満たすことで、単にサンプル列の収束を確認するだけでなく、サンプルが初期値の依存を脱却したかを確認することも可能である.これは、chains と呼ばれる初期値の異なる複

数のサンプルを並列して生成することで確認を行う.具体的には、初期値の異なる複数の サンプルを用いて式(5.29)より $\hat{\mathbf{R}}$ を計算したとき、それぞれのサンプル列の収束先が異なっ ていた場合には、 $\hat{\mathbf{R}}$ が大きくなる.このように、 $\hat{\mathbf{R}}$ を確認することでサンプルが局所最適解 に陥ることがないか判断することが可能である、ここでは、すべてのサンプルに対して $\hat{\mathbf{R}}$ < 1.1となれば収束したと判定²⁰する.

5.3.4 MCMC 法の設定

事後分布を推定するために用いる MCMC の設定を Table.5-1 に示す.本研究では、4 つの chains から \hat{R} の値が 1.1 以下となるように解析条件を設定した.また、burn-in を 20000 回と し、burn-in 後の 70000 回のサンプリングを事後分布に用いた.

Number of sampling	70000
Burn-in	20000
Chains	4
Ŕ	$\hat{R} < 1.1$

Table. 5-1 Analysis conditions of MCMC

5.3.5 調整済み弾性係数の事後分布

階層ベイズモデルの推定精度を評価するため、ベイズモデルから推定された調整済み弾 性係数の事後分布と比較を行う. Fig. 5-2 にベイズモデルから推定された調整済み弾性係数 の事後分布を示す.このベイズモデルでは、式(5.7)、式(5.8)を乗じたものを尤度とし、事前 分布には無除法事前分布を用いて推定している.また,階層型ベイズモデルから推定され た調整済み弾性係数の事後分布を Fig. 5-3 に示す. 図中の白点は, 第4章で得られた調整済 み弾性係数,分布の色は確率密度関数を表している. Fig. 5-2 に示すベイズモデルから推定 された事後分布では、調整済み弾性係数(Adjust elastic modulus)に含まれるばらつきが広 範囲に分布しており、分布形状からばらつきを精度良く推定できているとは言い難い結果 が示された.一方で, Fig. 5-3 に示す階層型ベイズモデルから推定された事後分布では,事 後分布の全体形状が広範囲に分布することなく、調整済み弾性係数が含むばらつきを表し ていると言える.加えて、調整済み弾性係数に対する確信度の高い区間も的確に捉えられ ている.このような事後分布が推定できたのは、ハイパーパラメータの最適化により確信 度の高い事前分布のパラメータが得られたためと考えられる.以上より、ベイズモデルか ら推定された事後分布と階層型ベイズモデルから推定された事後分布を比較し、階層ベイ ズモデルを用いることの優位性を示した.また,事後分布本研究で提案した情報量基準 WAIC を用いてハイパーパラメータを最適化することで、調整済み弾性係数が含むばらつき

を精度よく推定できたと言え、情報量基準 WAIC を用いたハイパーパラメータの最適化法の有用性を示した.

Fig. 5-2 Posterior distribution for adjust elastic modulus estimated from Bayes model

Fig. 5-3 Posterior distribution for adjust elastic modulus estimated from hierarchical Bayes model

5.4 妥当性検証

5.3 節で得られた事後分布にもとづき区間推定を行う.ここでの区間推定の値を均質化法のパラメータに利用することで,解析結果の確率的妥当性評価を行う.

5.4.1 調整済み弾性係数の 95%確信区間

5.3 節で得られた事後分布の 95%確信区間における上限値Uおよび下限値Lは事後分布を 用いて、それぞれ次式により求めた.

$$U = \bar{\mu} + 1.96 \times \frac{s}{\sqrt{n}} \tag{5.30}$$

$$L = \bar{\mu} - 1.96 \times \frac{s}{\sqrt{n}} \tag{5.31}$$

ここで、*µ*は事後分布の平均、sは事後分布の標準偏差、nは観測データ数である.

Fig. 5-3 に調整済み弾性係数のライナと中芯における各事後分布を示す. 点線内の区間は, 式(5.30)と式(5.31)から計算した 95%確信区間を表わしている. 95%確信区間は,区間内に含 まれる調整済み弾性係数の値が 95%の確率で真値を含むことを意味している. すなわち, 95%確信区間に含まれるの値を均質化法のパラメータに用いて解析を行うことで解析結果 の妥当性を保証できる. Fig. 5-3 より,ライナおよび中芯の調整済み弾性係数の事後分布は, 上に凸の形状をしており,ピークが存在する. また,各事後分布の 95%確信区間に含まれ る面積も大きく,的確に両袖を捉えている.従って,各事後分布においても確信度の高い 推定結果を得られたと言える.

(a) Liner

Fig. 5-3 95 percent credible interval in adjust elastic modulus

5.4.2 調整済み弾性係数の確率的妥当性検証

調整済み弾性係数の確率的評価法として,前節で求めた 95%確信区間の上限値Uと下限値 Lを実際に均質化法に用いて解析を行う.ここでの,均質化法は第4章のミクロモデルおよ びマクロモデルをそのまま用いて,ミクロモデルの弾性係数に 95%確信区間の上限値Uと下 限値Lの値を用いる.すなわち,ライナと中芯の上限値Uをミクロモデルの弾性係数に用い た場合には,解析結果の妥当性を保証できる上限値を明示化できる,一方,ライナと中芯 の下限値Lをミクロモデルの弾性係数に用いた場合には,解析結果の妥当性を保証できる下 限値を明示化できる.この上限値Uと下限値Lを用いた均質化法の議論を行うため,第4章 の荷重-変位特性の測定値および測定値の回帰直線,並びに調整済み弾性係数を用いた解 析結果も併せて示すことにする. Fig. 5-4 に抄紙方向および垂直方向の比較結果を示す. 図中の凡例以外の各線は,荷重-変位特性の各測定値,点線は測定値から求めた回帰直線を表している. Fig. 5-4 より調整済 み弾性係数を用いた解析結果は,回帰直線と概ね一致していることから,調整済み弾性係 数が正しく機能しており,均質化法に適用可能な調整済み弾性係数の有効性を確認するこ とができた. 一方,95%確信区間では,上限値Uおよび下限値Lの値を弾性係数に用いて均 質化法による解析を行なった結果,調整済み弾性係数を用いた解析結果を内包している. 従って,95%確信区間の調整済み弾性係数も正しく機能しており,上限値Uと下限値Lの値 を均質化法の弾性係数に用いることで解析結果の保証できる区間を明示的に示すことが可 能となった.

このように、ベイズ推定を用いることで信頼性のあるパラメータに対して 95%確信区間 を活用して評価できることは、従来にない妥当性評価法である.

(b) Cross direction

Fig. 5-4 Validation of estimated elastic modulus. Each line shows measurement values in each experiment.

5.5 まとめ

本章では,第4章で提案した実験と数値シミュレーションの融合による物性値の推定法 に対し,ベイズ推定を用いて試験値のばらつきを物性値の確率分布として表し,またベイ ズ推定の確信区間を利用して解析結果の妥当性を検証する方法を提案した.提案手法を両 面段ボール解析に適用し,以下の知見を得た.

- 階層ベイズモデルを用いることで、事前分布を観測データから推定できるため、事前 分布の恣意性を排除することが可能となる.
- ② ベイズモデルと階層型ベイズモデルから調整済み弾性係数のばらつきを推定し比較検 討を行った.ベイズモデルから推定された分布形状は広範囲に分布しており精度良く 推定できているとは言い難い.一方で事後分布の全体形状が広範囲に分布することな く,調整済み弾性係数が含むばらつきを表していると言える.これらから,階層ベイ ズモデルの優位性を示した.
- ③ 階層型ベイズモデルにおいて情報量規準 WAIC を用いてハイパーパラメータを最適化 することで、確信度の高い事後分布を得た.その結果、推定された事後分布が調整済 み弾性係数のばらつきを捉えていることから、情報量規準 WAIC を用いてハイパーパ ラメータを最適化することの有用性を示した.
- ④ 95%確信区間の上限値および下限値を均質化解析に用いた結果に調整済み弾性係数を 用いた解析結果が内包されていることから 95%確信区間が正しく機能していることを 確認した。
- ⑤ ④よりこれまで、試験値と解析結果を比較するに留まっていた妥当性検証に対して解析結果の精度を保証する確率的妥当性検証法の有用性を示した。

【第5章 参考文献】

- 1) 久保拓弥, データ解析のための統計モデリング, 岩波書店, p. 61 (2012)
- J. A. Neider and R. W. M. Wedderburn, Generalized Linear Models, Journal of the Royal Statistical Society, Series A (General), Vol. 135, No. 3, pp. 370-384 (1972)
- R. J. Rossi, Mathematical Statistics: An Introduction to Likelihood Based Inference, John Wiley & Son, p. 227 (2018)
- 4) 渡辺澄夫, ベイズ統計の理論と方法, コロナ社 (2012)
- 5) 松原望, ベイズ統計学概論, 培風館 (2010)
- 6) 久保裕也, データ解析のための統計モデリング, 岩波書店, p.224 (2012)
- G. M. Allenby, P. E. Rossi and R. E. McCulloch, Hierarchical Bayes model: A Practitioner's Guide, Social Science Research Network (2005)
- 8) H. Akaike, A new look at the Bayes procedure, Biometrica, Vol. 65, pp. 53-59 (1978)
- 9) 鈴木雪夫, 国友直人, ベイズ統計学とその応用, 東京大学出版会, pp. 81-98 (1989)
- 10) H. Akaike, Information Theory and an Extension of the Maximum Likelihood Principle in 2nd International Symposium on Information Theory (B. N. Petrov and F. Casaki, eds.) Akademiai Kiado, Budapest, pp. 267-281 (1973)
- H. Akaike, A New Look at the Statistical Model Identification, IEEE Transactions on Automatic Control, Vol. 19, No. 6, pp. 716-723 (1974)
- G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, Vol. 6, No. 2, pp. 461-464 (1978)
- D. J. Spiegelhalter, N. G. Best, B. P. Carlin and A. Linde, Bayesian Measures of Model Complexity and Fit, Journal of Royal Statistical Society: Statistical Methodology Series B, Vol. 64, No. 4, pp. 583-639 (2002)
- S. Watanabe, Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory, Journal of Machine Learning Research, Vol. 11, pp. 3571-3591 (2010)
- 15) 広く使える情報量規準, http://watanabe-www.math.dis.titech.ac.jp/users/swata nab/waic2011.html(閲覧日:2021年2月11日)
- S. Kullback and R. A. Leibler, One Information and Sufficiency, The Annals of Mathematical Statistics, Vol. 22, No. 1, pp. 79-86 (1951)
- 17) 岩崎篤, 吉永博行, ベイズ統計を用いた回帰係数分布の更新による損傷同定モデルの高 精度化, 日本機械学会論文集 (A 編), Vol. 77, No. 783, pp. 1934-1944 (2011)
- 18) T. P. Minka, Estimate a Gamma Distribution, Microsoft Research Technical Report (2002)

- W. K. Gilks, S. Richardson and D. J. Spiegelhalter, Markov chain Monte Carlo in Practice, Chapman& Hall/CRC Interdisciplinary Statistics (1996)
- 20) 伊庭幸人,種村正美,大森裕浩,和田肇,佐藤整尚,高橋明彦,計算統計II マルコフ連 鎖モンテカルロ法とその周辺,岩波書店 (2005)
- 21) J. S. Clark and A. E. Gelfand, Hierarchical Modeling for the Environmental Sciences: Statistical Methods and Applications, Oxford University Press (2006)
- 22) N. Metropolis, A. W. Rosenbluth, M. N. Rosenblut and A. H. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics Vol. 21, No. 6, pp. 1087-1092 (1953)
- A. Gelman and D. B. Rubin, Inference from Iterative Simulation Using Multiple Sequences. Statistical Science, Vol. 7, No. 4, pp. 457-472 (1992)
- 24) S. P. Brooks and A. Gelman, General Methods for Monitoring Convergence of Iterative Simulations, Journal of Computational and Graphical Statistics, Vol. 7, No. 4, pp. 434-455 (1998)
- 25) 古澄英男, ベイズ計算統計学, 朝倉書店 (2015)
- 26) A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari and D. B. Rubin, Bayesian Data Analysis (3rd edition), Chapman & Hall//CRC Texts in Statistical Science (2013)

第6章 結 論

本論文では解析の難易度が高い段ボールの曲げ特性を実用例に挙げ,実験と数値シミュ レーション解析を融合した,物性値が未知である対象物に関する新しい解析手法と,ベイ ズ推定を利用して物性値に含まれるばらつきの確率的評価法および確信区間を利用した解 析結果の妥当性検証法について研究を行い,以下の結論を得た.

- 「実験と数値シミュレーション解析を融合した物性値が未知である対象物に関する新 しい解析手法」では、両面段ボールを例に、試験と均質化法を併用して物性値を逆解 析的に推定し解析を行った.試験値や既存の研究と比較し本提案手法の有用性を検証 した.
- 「ベイズ推定を利用した確率的妥当性検証」では、解析精度を保証する新たな妥当性 検証法の開発を目的として、ベイズ推定を用いて逆解析により物性値をばらつきを含 んだ確率分布として推定した.そして、得られた物性値の確信区間を利用して解析結 果の定量的評価を行い、提案手法が定量的にシミュレーション結果を保証する新たな 解析手法として有用であることを示した.

本論文の提案手法は、段ボール解析のみならず、物性値が未知で、試験により得られる データにばらつきがあるような多くの工学問題に対しても有効な手法であると考えられる.

<謝辞>

本論文は,著者が大学院博士課程を通じて得られた知見を博士論文として述べたもので ある.従って,本論文の内容には,多くの方々から貴重な指導,助言,協力が反映されて いる.論文を結ぶに当たりご支援頂いた皆様に,ここで深く感謝の意を示ものとする.

特に江澤良孝先生(計算力学研究センター研究員,元東洋大学教授)には,構造解析, 統計的手法の考え方や提案手法の助言をはじめとして,本論文の全体にわたり事細かく指 導を頂いた.田村善昭先生(東洋大学教授)には,提案手法の本質に対する助言,豊富な工学 的知識に基づく貴重な意見を頻繁に頂いた.本論文の作成にあたっては江澤先生,田村先 生の両先生の指導の下で修正,加筆を繰り返し行い著述したものである.佐藤大亮さん(カ ネパッケージ株式会社)には,段ボールに関する知見や設計技法の指導を受けるとともに, 数値解析の一部をともに取り組んで頂いた.本論文の測定データは佐藤大亮さんをはじめ 株式会社カネパッケージ様の協力を頂いたものである.同研究室の高清水聖さんは,ベイ ズ推定の理解者の一人であり,同氏により示唆を受けた情報量基準の重要性は本研究の提 案手法に影響を与えたと感じる.筆者が研究活動の一環として大学院博士課程の間に在籍 させて頂いた東洋大学計算力学研究センターでは,国内外の学会やシンポジウムで研究成 果を発表させて頂く貴重な機会を与えて頂いた.また,同センター長の田村先生をはじめ 在籍している諸先生,増田正人さん,長岡慎介さん,職員の方々には多く経験と配慮を賜 った.最後に,筆者の研究活動に理解と支援を行って頂いた家族に感謝の意を示す.

これまでの博士課程を俯瞰すると,段ボールを対象とした構造解析に係る研究を江澤先 生,田村先生の指導の下で一貫して行ってきている.研究成果を研究論文として上梓し, 博士論文にまとめ上げるまで長い期間を費やしたことを恥じるとともに,あらためて両先 生に感謝の意を示す.

この他にも、これまでの研究を通じてご支援頂いたみなさまの紹介は割愛させて頂くが 筆者の謝意を汲み取って頂きたい.

120

<研究業績一覧>

く論文〉

*1) M, SHIMAMURA, Y. EZAWA, Y. TAMURA, S. TAKASHIMIZU and D. SATOU, High Accurate Analysis by Experiment and Simulation Using Bayesian Inference for Corrugated Cardboard, Mechanical Engineering Journal, Vol.3, No.4, pp.16-00072-16-00072 (2016)

*2) 島村雅彦, 江澤良孝, 田村善昭, 高清水聖, 佐藤大亮, 両面段ボールに対する均質化解 析とベイズ推定を用いた確率的妥当性評価技術の開発, 日本包装学会誌, Vol.28, No.5, pp.321-334 (2019)

*印は査読付き論文

<外部発表>

- 1) 島村雅彦, 江澤良孝, 田村善昭, 高清水聖, 佐藤大亮, ベイズ推定を用いた実験と数値シ ミュレーション融合による高精度予測, 第28回計算力学講演会(CMD2015), 横浜国立 大学 (2015)
- M. Shimamura, Y. Ezawa, Y. Tamura, S. Takashimizu, D. Satou, 日本機械学会材料力学部門若 手シンポジウム, Development of Efficient and Accurate Analysis Method for Corrugate Fibreboard, 日本機械学会第 10 回最適化シンポジウム, 三重県伊勢崎市神宮会館 (2015)
- 3) 島村雅彦, 江澤良孝, 田村善昭, 高清水聖, 佐藤大亮, ベイズ推定を用いた実験と数値シ ミュレーション融合による高精度予測,第 29 回計算力学講演会(CMD2016), 名古屋大学 (2016)
- 4) M. Shimamura, Y. Ezawa, Y. Tamura, S. Takashimizu and D. Satou, High Accurate Analysis by Experiment and Simulation Using Bayesian Inference, The 12th World Congress on Computational Mechanics & The 6th Asia-Pacific Congress on Computational Mechanics, Coex Convention & Exhibition Center (2016)