クライオ条件におけるゲル化の QCM-A 測定

Cryo-measurement of gelation process by means of QCM-A

清田 佳美*

1. はじめに

筆者は水晶振動子マイクロバランス (QCM) を用いて 分子レベルでゲル体の特性評価を行なってきた。QCM は、ずり振動する水晶板に負荷がかかることによって生 じる振動の周波数変化と位相遅れを指標として、負荷の 質量変化や粘弾性変化を原子レベルの空間オーダーで 観測するセンサーである。温度、溶媒組成、塩濃度とい った環境条件の変化(刺激)に応じて生じるゲル体の相 変化を高感度かつ精密に観測する手法の開発をこれま で行ってきた。特にゲルを構成する高分子鎖の可逆的な 水和・脱水和の変化、高分子鎖・グラフト鎖のコンホメ ーション変化や有機分子の吸着現象などを高感度に観 測している 1.5)。QCM はゲルの多様で微細な相変化を 精密に観測することが可能な高感度プローブになるこ とから、より広範な温度条件で使用可能な QCM を構築 しようと考え、クライオ条件におけるソフトマテリアル の測定系の開発を行なった。本報では、クライオ条件に おけるハイドロゲルの形成プロセス (ゲル化プロセス) を観測する QCM 測定系の開発について紹介する。

2. アドミッタンス解析

本研究ではアドミッタンス法により QCM の共振挙動 をモニターしている。以下、アドミッタンス法の概要を 示す⁴⁾。QCM の機械的振動現象をフォークトモデルで 近似すると、共振現象(強制振動の運動方程式)は(1)式 で表される。ここで、m、 η 、kはそれぞれ QCM にかか る負荷の質量、粘性係数、弾性係数を表し、x、t、 ω (= $2\pi f$) はそれぞれ変位、時間、角振動数を表す。

$$m\frac{dx^2}{dt^2} + \eta\frac{dx}{dt} + kx = F\cos\omega t \tag{1}$$

(1)式はLCR 直列回路の強制振動を表す理論式(2)式と

数学的に等価であることから、共振する QCM の LCR 回路パラメータ (リアクタンス L、キャパシタンス C (1/C)、レジスタンス R)を求めることによって負荷の質 量 m、粘性 η 、弾性挙動 kの変化を推察可能である。

$$L\frac{dl^2}{dt^2} + R\frac{dl}{dt} + \left(\frac{1}{c}\right)I = V\omega\cos\omega t \tag{2}$$

アドミッタンス法では、図1に示すように共振点近傍 の周波数(f)スキャンにより得られるアドミッタンス(Y = G + iB)の実数成分(コンダクタンス G)と虚数成分 (サセプタンス B)を測定すことにより、(3)、(4)式の関 係を用いて(5)~(7)式より LCR 回路パラメータを求め る。

図1アドミッタンス測定の原理⁸⁾

$$G = \frac{R}{R^2 + (2\pi f_e L - 1/2\pi f_e C)^2}$$
(3)

$$B = \frac{2\pi f_s L - 1/2\pi f C}{R^2 + (2\pi f L - 1/2\pi f C)^2} + 2\pi f C_0 \tag{4}$$

$$R = \frac{1}{G_{max}} \tag{5}$$

$$L = \frac{R}{2\pi(f_2 - f_1)} \tag{6}$$

$$C = \frac{1}{(2\pi f_s)^2 L} = \frac{f_2 - f_1}{2\pi f_s^2 R}$$
(7)

直感的には、QCMの負荷の質量・弾性変化や粘性変 化は共振周波数 fs やf2 (近似的に粘性影響フリーのf変

クライオ条件におけるゲル化のQCM-A 測定 Cryo-measurement of gelation process by means of QCM-A 清田 佳美

化)および R 値(=1/G_{max})により推定できる。一般的には、負荷の質量や弾性が大きくなると振動しにくくなることからf値は減少し、負荷の粘性が高くなるとR値が増加する。

3. クライオ条件測定への適用

3.1 測定方法

はじめに純水の相変化の 観測を通じて QCM のクラ イオ条件測定系の構築を試 みた。本測定系の開発ポイ ントはモイスチャーコント ロールにある。気相中に含 まれる水蒸気は、クライオ 条件では QCM の電極表面 に吸着して f 値を乱す要因 になることから空間サイズ

を極力小さくする必要がある。水が凍ると QCM への負 荷が非常に大きくなるため発振が不安定になる。そのた めマイクロ量 (~2µL)の試料を取り扱うことになる。 反面、微量の水は容易に蒸発するため、これを制御する 必要がある。そこで図 2 に示す膜状セルおよびディン プル構造を有する薄層フィルムキャップを用いたセル を構築した⁸。薄層シートを積層する形でセルを構成し、 容積を極力小さくした密閉セルを実現している。セルの 最下面に設置したペルチェ素子を用いて 283K→243K →283K のシーケンスで温度を走引し (±1K/min)、純 水の凍結・融解過程の QCM 応答をアドミッタンス法に よりモニタリングした。

3.2 水の凍結融解測定

図 3⁸に QCM-A 測定例を示す。冷却過程ではf値やG 値は温度の低下とともに密度の増加により微減する。過 冷却したのち、本系では 254K 付近で凍結によるf値の 高周波数側へのシフト、G値の大幅減少が見られる。凝 固後はf値、G値ともに変化はわずかである。昇温過程 では、268K 付近から 273K にかけてf値が急激に高周 波数側にシフトし、G値は減少する現象が観察される。 氷が融解する前に柔らかくなり粘性が増すものと解釈 される。273Kでは融解によりfおよびG値は液体状態 の値に戻る。水の密度は、液体から固体への相変化(凍 結)により約8%減少するが、凍結によって非常に弾性 が大きくなる状態において水晶板の固有振動数 f6 (無負 荷時の振動数)よりも高い f値にシフトした。この現象 は QCM 応答に関する一般的な理解と異なる異常現象 であるように見える。高粘性の物質を QCM で測定する と、高粘性であるにもかかわらず共振周波数が高周波数 側にシフトするというパラドックスを経験することが ある。本系の結果はまさにこの一例である。図3の結果 から求めた各温度における LCR 回路パラメータを図 4 に示す。冷却過程では、L、1/C、および R 値は水が凍 結するまで温度の低下とともに微増し、温度の低下に伴 って QCM 上の水の密度、弾性および粘度が増加するこ とを示している。約 254K での L、1/C、および R 値の

図4アドミッタンス解析結果8)

急激な変化は、水の凍結により質量および粘性に起因す る負荷が増加していることを示している。質量に関して は QCM の振動の浸透厚みの変化を反映してる。氷の状 態では、温度の低下とともに L と 1/C 値は増加し、R 値 はわずかに減少する。昇温過程では、R 値は温度ととも に増加し、その後、氷の融解とともに約 273K で初期レ ベルに戻る。

273K 付近の昇温過程で粘度の顕著な上昇がみられる。 温度の上昇に伴い、QCM の電極表面の氷層が軟化する ことによりこの現象が発生する可能性があると考えら れる。氷の界面層の融解または軟化により、界面層の上 の氷層は、界面層でより長いタイムラグを伴って振動す るようになり、R が大きくなると推察している。

図 4 に示すように LCR 回路パラメータにより水の凍 結・融解プロセスにおける粘弾性変化が捉えられており、 現象の直感的な理解とおおむね整合する。LCR 等価回 路モデルを用いてGスペクトルをシミュレートすると、 負荷の粘性が非常に高い場合(図 5、Case II)にはf値 は f_0 を超えて高周波数側に大きくシフトすることがわ かる ⁸。本現象は、ポリスチレンの段階的積層に伴う QCM 応答を観察すると同様に観察され(図 6)、応答現 象との対応関係について報告している ⁶。

3.3 PVA ゾルのゲル化過程の QCM 応答

PVA ゾルは、反復凍結融解操作によってゲル化するこ とが知られている図 7(a), (b)に PVA ゾル(15%水溶液) の反復凍結融解過程(1サイクル、283K→248K→283K)

図 5 Gスペクトルの粘性依存性⁸⁾

における QCM-A 応答を示す n 。凍結融解操作を繰り返 すことによって、R 値の挙動から試料の粘性が高くなる こと、f 値の挙動から負荷が大きくなり過冷却後に凍結 する温度が低温側にシフトすることが確認できる。冷却 過程では、凍結融解操作を繰り返すことによってf 値は 減少しR 値増加する傾向にある。一方、昇温過程では、 凍結融解操作の繰り返しによってf 値や R 値の温度依 存性が低温側にシフトする傾向が見られる。

一般に、PVA ゾルを時間オーダーでゆっくりと反復凍 結融解するとゲル化し、その回数が増すに従ってゲル中 に多孔質構造が発達した高強度ゲルを生成することが わかっている。図7(a),(b)に示すfおよびR値の変化は 多孔質構造の初期形成を敏感に反映していると考えら れる。多孔質体において多孔質構造の形成・発達と細孔 内の水の熱力学的挙動は相関する。ゲル体における多孔 質構造の形成はゲルの粘弾性および細孔内の水和構造 に反映する。多孔質構造の発達による水和構造変化(凍 結・融解温度・融解エンタルピーの低下)について含水 させたシリカゲルを用いた熱分析による検討を行なっ ている。種々の多孔質構造(細孔サイズ)を有する飽和

図 6 ポリスチレン高負荷時の QCM 応答 (G スペ クトルの経時変化(上図)と概念図(下図)⁶⁾ 含水シリカゲルを用いて多孔質内の水の凍結温度、融解 温度および凍結・融解エンタルピーの傾向を分析した^{η}。 シリカゲルでは、細孔が形成され細孔サイズが大きくな るにつれて細孔内の水の凍結温度や融解温度が高温に シフトし、凍結・融解時のエンタルピー変化が大きくな る。細孔が小さいほど運動を束縛される水の割合が高い ことを意味する。QCM で測定した(短時間に反復凍結 融解操作を行った) PVA について各サイクルごとの試 料の熱分析(各サイクル毎)により、初期の細孔構造形 成が示唆される傾向が認められた。図7(c)に凍結融解操 作の反復回数(cycle number)と凍結温度(*T*_f)、融解温 度(*T*_m)、融解エンタルピー(ΔH_m)の関係を示す。凍結融解 操作を繰り返すことによって凍結・融解温度(*T*_f, *T*_m) は低温側にシフトしている。一方、融解のエンタルピー 変化もサイクル数の増加とともに増加している。

多孔質構造の発達は昇温プロセスの 263~273K で起 こることが他の構造分析でも示唆されている。QCM で 観測された昇温プロセスにおける挙動は氷晶の軟化、ゲ ルの多孔質構造形成や高分子鎖のバンドル形成と関連 していると考えられる。なお、昇温過程で粘性が大きく 増加する領域では QCM の応答が比較的不安定である ため、安定な測定に向けた手法の間発が必要である。

4.まとめ

本研究で構築した QCM 測定系はクライオ条件で粘弾 性挙動の変化を観察するなど、低温物性の評価に寄与 すると考えている。特にゲルなどのソフトマテリアル や混合溶媒の物性評価など、従来測定が困難な物質の 低温物性評価において有用と考えられ、種々のハイド ロゲル、オルガノゲル、無機ゲルなどのゲル体や DMSO やプロパノール-水混合系など、混合溶媒系の 低温粘弾性挙動(温度依存性)の評価に適用してい る。

謝辞 本研究の一部は JSPS 科研費(課題番号 15K00586)の助成よ り行われた。

参考文献

- 1) 中野、清田、川邊、高分子論文集、55(12), pp.791-795 (1998)
- Nakano Y., Seida Y., Nakano Y., **36**(10), J. Chem. Eng. Jpn, pp.1204-1205 (2007)
- Nakano Y., Seida Y., Nakano Y., Chem Lett., 36(10), pp. 1204-1205 (2007)
- 4)清田、佐藤、中野(由)、中野(義)、化学工学シンポジウムシリ
 ーズ 80,「機能性微粒子の高機能化・新展開・用途開発」、
 pp.154-162 (2008)
- Seida Y. et al., Tans. Mat. Res. Soc. Jpn., 32(3), pp.783-786 (2007), 38(4), pp.651-654 (2013)
- 6)清田、東洋大学紀要 自然科学篇,第 59 号、pp.47-56、pp.57-64 (2015)、第 60 号、pp.85-92 (2016)
- 7) Seida Y., Ogawa M., J. Mat. Sci. Res. 5(3), pp.42-51(2016)
- 8) Seida Y., J. Chem. Eng. Jpn, 50(3), pp.195-200 (2017)

図 7 PVA ゾルの反復凍結過程における QCM 応答および各サイクル終了後におけるゲルの凍結融解温度と融解 エンタルピー結果。(a)f 値の変化、(b)R 値の変化、(c)熱分析結果⁷⁾