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QSPR Study of Acceptable Daily Intake of
Organophosphorus Pesticides
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Abstract

Organophosphourus (OP) agrochemicals represent an important group of chemicals
used over the past 60 years for protecting crops, livestock, and human health and as
warfare agents. OPs can raise environmental and health problems because of their
toxicity and possibility to accumulate in the food chain as pesticide residues. The
acceptable daily intake (ADI) can be considered as a measure on human health of the
effect of pesticide residues in food. In this paper the influence of 46 OPs structure on
their ADIs (expressed as pADIs) is studied. OP structural descriptors were calculated
from the energy optimized structures using molecular mechanics calculations. Their
pADI values were related to them using linear (multiple linear regression, MLR,
combined with genetic algorithm for variable selection) and nonlinear (artificial neural
network, ANN) approaches. 22 compounds were included in the models as training set,
6 in the prediction set and 18 OPs as external set. Robust models with predictive power
were obtained using the linear MLR approach. The nonlinear modeling of pADIs gave
an unstable model without predictive power. The robustness, overfitting and prediction
power and applicability domain of the QSPR (quantitative structure-property
relationship) models were checked. New experimental toxicological data would be
needed for ten out of the 46 OPs, to revise their known ADI values. New ADIs for
similar compounds could be predicted based on the linear QSPR models.

Keywords : organophosphourus compounds, accessible daily intake, MLR, ANN

1. Introduction

Agrochemicals are used as animal and bird repellents, food storage protectants,
herbicides, insecticides and acaricides, rodenticides, plant growth regulators, mould-
killing substances, antifouling products, soil sterilants, and wood preservatives (Renwick,
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2002).

Organophosphorus compounds (OPs) constitute an important group of chemicals used
over the past 60 years for protecting crops, livestock, human health and as warfare
agents (Elersek and Filipic, 2011). They are broadly used worldwide, and account for ca.
50% of total pesticide use in the world (Guodong et al, 2012). Despite their benefits in
the fight against pests, the unreasonable use of organophosphate pesticides can
generate environmental pollution problems due to their stability, high toxicity and
capacity to accumulate in the food chain.

Organophosphate pesticide residues and their metabolites were found in human
tissues and urine, including persons not exposed occupationally (Witczak et al, 2018;
Rezg et al, 2010). A long-term exposure to low doses of pesticides may cause
dysfunctions of the immune, respiratory and endocrine systems, producing negative
neurological and reproductive effects, as well as dermal changes (Krieger, 2001).

The 'acceptable daily intake' (ADI) notion to evaluate the pesticide residue in food
was first introduced by the Joint FAO/WHO Expert Committee on Food Additives
(JECFA) in 1958 (FAO Nutrition meeting Report Series 17/WHO tech. Rep. Series 144,
1958) with insignificant modifications in 1962 (WHO tech. Rep. Ser. 240, 1962; FAO
nutrition meetings Report series 31/WHO tech. Rep. Ser. 228, 1962), 1974 and 1987
(WHO Environmental health criteria 70, 1987). In the following years, hundreds of food
additives and pesticide residues have been evaluated and reevaluated by these two
international expert groups (Lu, 1988). The ADIs, used nationally and internationally in
the elaboration of food standards, have proved satisfactory in permitting the cautious
use of these chemicals and in protecting the health of the consumer (Rubery et al.,
1990).

ADI was defined as “the daily intake of a chemical which, during an entire lifetime,
appears to be without appreciable risk on the basis of all known facts at the time.” (FAO
nutrition meetings Report series 31/WHO Tech. Rep. Ser. 228, 1962). It is described as
an estimate of the amount of a food additive, expressed on a bodyweight basis that can
be ingested on daily over a lifetime without significant risk to health. The World Health
Organization (WHO) and United States Environmental Protection Agency (U.S. EPA)
have established an ADI for an actual risk management decision in the regulatory
process of pesticides for setting safety standards.

The determination of acceptable daily intake (ADI) for the toxicological evaluation
implies collecting all relevant data, determining the no-effect level using the most
sensitive indicator of the toxicity, and applying an appropriate safety factor to arrive at
the ADI for man (Lu, 1988). The ADI is established based on known facts at one time.
This fact is consistent with the view that it is impossible to be absolutely certain about
the safety of a chemical and the ADI may be revised with respect to the new

toxicological data.
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In a previous study Kim (2012) modeled ADI values, considered as health-based
control, of several pesticides using the MLR approach. He pointed out that an approach
using a robust QSAR technique would be useful to detect potential sources that might
provide critical information about uncertainty of ADI values in addition to the model
development as preliminary human health risk assessment for certain pesticides.

This paper presents the application of multiple linear regression (MLR) and artificial
neural network (ANN) approaches to model the accessible daily intake dependence on
the structural features of a series of 46 organophosphorous pesticides (http://www.
inchem.org/pages/pims.html). Molecular mechanics calculations based on the MMFF94s
force field were employed to model the pesticide structures. Structural features were
computed from the minimum energy structures and were related to the ADI values
using the multiple linear regression (MLR) and artificial neural network (ANN)

approaches.

2. Methods

Definition of target property and molecular structures

The acceptable daily intake (ADI) (mg/kg bodyweight) of 46 organophosphorous
pesticides with diverse structures (http://www.inchem.org/pages/pims.html) was molar
converted to pADI (Table 1) and was used as dependent variable in this study.

Table 1. Structure of the organophosphorous pesticides and the pADI values.
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The OP structures were optimized using the conformer plugin (with MMFF94 as
molecular mechanics force field) inside the MarvinSketch (MarvinSketch 15.2.16.0,
ChemAxon Ltd. http://chemaxon.com) package. The lowest energy conformers were
used to calculate the structural descriptors using the DRAGON (Dragon Professional 5.5,
2007, Talete S.R.L., Milano, Italy) and InstanJChem (Instant JChem 20.15.0, 2020,

Chemaxon, http://www.chemaxon.com) software.
MLR method

The multiple linear regression (MLR) (Wold and Dunn III, 1983) approach was
employed together with the genetic algorithm for variable selection included using the
QSARINS v.2.2.4 program (Chirico and Gramatica, 2012; Gramatica et al., 2013;
Gramatica, 2020). 1736 structural descriptors were calculated for the 46 OPs. In the
MLR calculations the RQK fitness function (Todeschini et al, 2004) with leave-one-out
cross-validation (Hawkins et al, 2003) correlation coefficient as constrained function to
be optimized, a crossover/mutation trade-off parameter of T = 0.5 and a model
population size of P = 50 were employed.

The OP derivatives were divided into training and test sets by response splitting
(Gramatica et al, 2012; Gramatica, 2014) to verify if the chemicals in the model were
included in the response domain (chemicals were ordered according to their increasing
activity, and one out of every three chemicals was put in the prediction set, always
including the most and the least active compounds in the training set). Six compounds
in the test set were taken out of the total number of compounds: compounds 3, 15, 16,

17, 18, 26. In the external set following 18 compounds were included: 4, 30-46.
ANN method

ANNSs (Zupan, and Gasteiger, 1999) simulate the functioning of human neurons and
have been used as a nonlinear modeling approach. Among the various architecture and
learning algorithms of ANN, the four descriptors in the best MLR model were used as
input for a three-layer, fully connected, a feed-forward neural network with the back-
propagation of errors. The number of input neurons was equal to the number of
descriptors in the MLR model, and the output layer consists of one neuron for the pADI
values. All input and output data were normalized 0 and 1. A commonly used log
sigmoid function and the delta rule for the error correction formula were used in the
networks. The calculation was performed using our in-house program.

Model validation

Internal and external validation criteria were verified to obtain robust and predictive
models. To test the model predictive power following criteria were used: Qil (Shi et al.,
2001); Qiz (Schiitirmann et al., 2008); Q§3 (Consonni et al., 2009) and the concordance
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correlation coefficient (CCC) (Chirico and Gramatica, 2011), with the thresholds values
higher than 0.85, as they have been rigorously determined by a simulation study
(Chirico and Gramatica, 2012).

In addition the predictive parameter rfn (Roy and Mitra, 2012) was used, with the
lowest threshold value of 0.65 used to be accepted.

For internal model validation the model robustness and overfitting were checked
using the Y-randomization test. 2000 randomizations were employed to develop MLR
models with minimal r* and q2 values (Eriksson et al, 2001). In addition, the adjusted
correlation coefficient ( erj ) and ¢” (leave-one-out, qioo , and leave-more-out, qiMo ) cross-
validation coefficients were calculated, too. The model chance correlation was verified
using the Y-scrambling or response permutation/randomization procedure. rir and qfcr
parameters were obtained by randomly shuffling the dependent variable vector

(Y-vector) using the original independent variable matrix.

The root-mean-square errors (RMSE) and the mean absolute error (MAE) of the
training, crossvalidation and test sets were compared to check the model robustness
and overfitting (Gramatica, 2020).

The Multi-Criteria Decision Making (MCDM) scores (Keller et al, 1991) were used to
choose the best MLR models and were calculated based on the fitting, cross validated

and external criteria.

3. Results and discussion

The data was normalized using the auto-scaling method:

X »_Xm
XT, = === (1)

m

where for each variable m, XT ; and X_; are the j values for the m variable after and

before scaling, respectively, X is the mean, and S,, is the standard deviation of the

variable.
Several MLR models were obtained applying the genetic algorithm for variable
selection. The internal and external validation criteria for these models are presented in

Tables 2-4.
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Table 2. Internal validation parameters of the MLR and ANN models (tr-training set)*

Model 2 2 RMSE,; MAE; CCCy 2 SEE F

2 2 2
rlraining qLOO qLMO radj ser qscr
MLRI1 0.874  0.802 0.776 0.844 0.229  0.194 0933 0.191 -0.429 0.260 29.475
MLR2  0.832 0.765 0.744 0.805 0.263  0.235 0908 0.134 -0.285 0.289  31.305
MLR3  0.711 0585 0.559 0.665 0345 0.269 0.831 0.137 -0.276 0.379 15.551

ANN 0.967  0.527 0960 0.116  0.085 0.983
* rlfainmg ~correlation coefficient; q - leave-one-out correlation coefficient; q;,,, leave-

more-out correlation coefficient; rj‘j -adjusted correlation coefficient; RMSEu-root-mean-

square errors; MAE«mean absolute error; CCCu-the concordance correlation coefficient; 1,
and qfa. -Y-scrambling parameters; SEE-standard error of estimates; F-Fischer test.

Table 3. Crossvalidation (cv) results, MCDM values and final selected descriptors*

Model ~ RMSE., MAEs CCCo  MCDM  Descriptors included in the MLR model*

MLRI1 0.287 0.249 0.896 0.839  JGT RDF090v FO3[C-N] FO06[C-P]

MLR2 0311 0282 0.872 0.819 JGT RDF090v FO03[C-N]

MLR3 0.413 0323 0.758 0.736 nN GGI7 JGT

ANN 0.444 0.375 0.743 JGT RDF090v FO3[C-N] F06[C-P]
* JGT- global topological charge index (Galvez topological charge indices), RDF090v- Radial
Distribution Function - 9.0/weighted by atomic van der Waals volumes (RDF
descriptors), FO3[C-N]-frequency of C-N at topological distance 3 (2D frequency fingerprints),
FO6[C-P]-frequency of C-P at topological distance 6 (2D frequency fingerprints), nN- number
of Nitrogen atoms constitutional descriptors, GGI7- topological charge index of order 7
(Galvez topological charge indices).

Table 4. External validation parameters of the MLR and models (test set)*

Model le-‘l ()]2__2 Q]2:3 RMSEext MAEext CCCext Rezxt I‘n%l

MLRI1 0.925 0915 0.900 0.172 0.128 0.945 0.925 0.875
MLR2 0.928 0.916 0.897 0.174 0.169 0.945 0.928 0.894
MLR3 0.969 0.776 0.727 0.284 0.214 0.791 0.969 0.517
ANN 0.333 0.215 0.442 0.482 0.437 0.660 0.215 0.808

2 . .
* QY5 Qf,;Qr;, R%x, 1. -external validation parameters; RMSEexi-root-mean-square
errors; MAEext -mean absolute error; CCCext-the concordance correlation coefficient

Experimental versus predicted pADI values, Williams and Y-scramble plots are
included for the MLR1 best model in Figures 1, 2 and 3, respectively.



QSPR Study of Organophosphorus Pesticide Food Residues 101

. . S

Predicted pADI
Predicted pADI
g

7103

6826

6460 6825 7193 7559 7925 8.201 8638 9024 9.30 o

Experimental pADI Experimental pADI

Figure 1. Experimental versus predicted pADI values for the MLR1 model predicted by the model
(left) and by the leave-one-out (right) crosvalidation approach (yellow circles-training

compounds, blue circles-test and external compounds).

The Williams plots for the training/crossvalidation/prediction/external sets establish
the applicability domain of the models within £3.0 ¢ and a leverage threshold h* of
0.6818 (k; > h: hi =leverage of a given chemical; h*= the warning leverage). All
compounds in the dataset are within the applicability domain of the best MLR1 model,
as presented in Figure 2, except 9 out of 18 OPs in the external set: no. 30, 31, 33, 34, 36,
38, 39, 43, and 44, and one compound in the prediction set: no. 26, which were found as
outliers. For these compounds other new toxicological data would be needed to establish
appropriate ADI values.

MLRI1 model overfit was checked after 2000 trials, using the y-scrambling test.
Significant low scrambled 7 ( rfcr ) and cross-validated q2 ( qir ) values obtained for
MLR1 model, indicate the model robustness and no chance correlation. Figure 3
suggests that in case of all the randomized models, the values of r’, and q’, were <
0682 (r,/d’., of 0.191/-0.429).
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The intercorrelation analysis of the selected molecular descriptors from the MLR1

model is presented in Table 5. The selected descriptors are not intercorrelated.

Table 5. Correlation matrix of the selected descriptors included in the MLR1 model

JGT RDF090v FO3[C-N] FO6[C-P] Standardized
coefficients
JGT 1.0000 -0.638
RDF090v -0.2107 1.0000 0.573
FO3[C-N] -0.1120 0.3673 1.0000 -0.475
F06[C-P] -0.3393 0.2330 0.3157 1.0000 -0.238
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Figure 2. Williams plot predicted by the MLR1 model predicted (left) and by the leave-one-out

(right) crosvalidation approach (yellow circles-training compounds, blue circles-test and external

compounds).
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Figure 3. Y-scramble plots for the MLR1 model(yellow circles-ricr; red circles-qzscr ).
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Four descriptors are included in the best MLR1 model: JGT, RDF090v, FO3[C-N1, and
F06[C-P]. Highest contribution to the pADI is given by the JGT, and RDF090v
descriptors. Topological charge indices were proposed to evaluate the charge transfer
between pairs of atoms, and therefore the global charge transfer in the molecule
(Galvez, Jet al., 1994). The GGI7 descriptor evaluates charge transfer in molecule carried
out from the adjacency topological matrix. Helguera et al. (2008) consider that these
indices represent a strictly topological quantity, being plausibly correlated with the
charge distribution inside the molecule.

Radial Distribution Function (RDF) of an ensemble of atoms can be interpreted as the
probability distribution of finding an atom in a spherical volume of certain radius, also
incorporating different atomic properties in order to differentiate the contribution of
atoms to activity (Duchowicz et al,, 2008; Hemmer et al., 1999).

Higher values of the RDF090v descriptor and lower values of the JGT, FO3[C-N] and
F06[C-P] descriptors would favor lower ADI values.

The nonlinear ANN model performed for the four descriptors included in the best
MLR model is not stable from statistical point of view. Different values for the RMSE
and MAE parameters were obtained for the training/test/cross-validation sets. The
fitting results are good, but the ANN model is without predictive power (see Tables
3-5).

The statistical results and intercorrelation coefficients presented above confirm that
the MLR method associated with a proper variable selection procedure generates an
efficient QSPR model for modeling the ADI values. Nonlinear simulation of pADIs gave
worse results. Based on the proposed best MLR1 model ADI values could be predicted

for other similar OPs.

4. Conclusion

46 organophosphorus compounds were modeled in this paper using QSPR models for
their acceptable daily intake (ADI), an important measure of the pesticide residues in
food. Multiple linear regression and artificial neural networks were employed to relate
the pADI values to the computed structural descriptors of the OPs. Good linear QSPR
models with predictive power were obtained. The nonlinear ANN model is not stable
and does not have predictive power. The linear MLR model could be useful in the
design of new similar compounds and in the prediction of their ADI values, based on
the QSPR proposed models, for qualitative and quantitative risk assessments.
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