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Abstract

　In order to understand the dif ference of type of lithologic layering in the Horoman 

peridotite complex, this paper examines a three-dimensional strain analysis of pyroxene-

spinel seams in the Horoman peridotites. The Equigranular and Internal Shear Zones have 

suffered 19 % of thinning normal to the foliation relative to the Porphyroclastic and Basal 

Shear Zones. Although this is consistent to that deformation overprinting history of the 

Harman peridotites, estimated thinning ratio of 19 % is not adequate to explain the difference 

of the lithological thickness of the Upper and Lower Zones. It requires fur ther 

understandings of strain partitioning between peridotites and gabbros.

Keywords: Horoman peridotite complex, strain analysis, pyroxene-spinel seam, lithologic 

layering

1. Introduction

　An orogenic peridotite massif, which formerly composed upper mantle and exposes as a 

large-scale fragment on the earth’s surface, is one of the best samples to understand 

processes of melt segregation and their transport in the upper mantle. The Horoman 

peridotite complex, Hokkaido, northern Japan is well known to have a symmetric layered 

structure consisting of peridotites and magmatic rocks (Komatsu and Nochi, 1966, Niida, 

1984, Obata and Nagahara, 1987, Takahashi, 1991). Many researchers have discussed the 

origin of the lithologic layering and mantle processes recorded in the Horoman peridotites 

(Niida, 1984, Obata and Nagahara, 1987, Takahashi, 1991, 1992, Takazawa, 1992, 1996, 1999, 

Morishita, 1999, Toramaru, 1997, Toramaru et al., 2001). Toramaru (1997) and Toramaru et 

al. (2001) examined symmetric pattern of the gabbro bands and explained such scale-

invariant lithologic layering of the Horoman peridotite complex with the stretching and 

bending during deformation (or stream line mixing).

　In order to understand the difference of the type of lithologic layering and its relation to 

mantle processes, we should compare the state of strain of the peridotite itself and the 
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thickness of layering. This paper shows a result of three-dimensional strain analysis of 

pyroxene-spinel seams in the Horoman peridotites.

2. Geological background

　The Horoman peridotite complex is one of the Alpine-type peridotite massifs located at the 

southwestern margin of the Hidaka metamorphic belt, Hokkaido, Japan, and exposed over 8 

× 10 km in size (Fig. 1). A characteristic lithologic layering, which consists of plagioclase-

lherzolite, spinel-lherzolite, harzburgite and dunite, with subsidiary pyroxenite and mafic 

Fig. 1.　Tectonic map of the Horoman peridotite complex in the Hidaka metamorphic belt, Hokkaido, Japan.
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layers, is thought to be almost parallel to foliation (Niida, 1974). Foliation and lineation of the 

peridotites are defined by lenticular shapes of fine-grained seams consisting of spinel + 

orthopyroxene + clinopyroxene in spinel lherzolite and of spinel + plagioclase + olivine in 

plagioclase lherzolite, arrangement of spinel grains and elongated or thopyroxene 

porphyroclasts. 

　The complex is divided into the Upper Zone and the Lower Zone on the basis of the rock 

composition and thickness of layered structure (Komatsu and Nochi, 1966, Niida, 1974). The 

Upper Zone exhibits a conspicuous layered structure consisting of thin (a few mm to tens of 

meter) compositional layers with sharp layer boundaries. The Lower Zone has thick (several 

tens or hundreds of meter) layered structure and is characterized by a gradual compositional 

layering. Cyclic layering which starts from harzburgite in the center through spinel lherzolite 

to plagioclase lherzolite at both extremities were recognized at least four times in the Lower 

Zone along the Horoman River (Niida, 1974). Total thickness of compositional layering is 

about 3.7 km; 1 km for the Upper Zone and 2.7 km for the Lower Zone (Sawaguchi, 2001, 

2004).

　From the structural analysis of deformation microstructures, the massif can be divided 

into fi ve structural units parallel to the lithological layering as follows; (1) Equigranular Zone, 

(2) Internal Shear Zone, (3) Transitional Zone, (4) Porphyroclastic Zone and (5) Basal Shear 

Zone (Fig. 1. Sawaguchi, 2004). Two large-scale ductile shear zones can be recognized by 

different pattern of grain-size reduction of olivine at the middle horizon and basal part. Each 

shear zone is called the Internal Shear Zone and the Basal Shear Zone, respectively. 

　The Upper Zone (Lithologic classifi cation) almost corresponds to the Equigranular Zone 

(structural classifi cation), and the Lower Zone corresponds to the other 4 zones (Internal 

Shear Zone, Transitional Zone, Porphyroclastic and Basal Shear Zone). A top-to-the-south 

ductile deformation had overprinted only on the Equigranular and Internal Shear Zones 

(Sawaguchi, 2004). 

　Foliation and lineation in the Horoman peridotite are clearly recognized by the lenticular 

shape of the fi ne-grained seam consisting of spinel + orthopyroxene + clinopyroxene in spinel 

lherzolite and of spinel + plagioclase + olivine in plagioclase lherzolite in both Upper and 

Lower Zones (Fig. 2). These seams are thought to be formed by sub-solidus reaction of 

pyrope garnet + olivine (Takahashi and Arai, 1987, Ozawa and Takahashi, 1995). Because 

pyroxene + spinel seam in symplectite-bearing spinel lherzolite frequently includes several 

pyroxene-spinel symplectite (garnet pseudomorph), it is apparent that the ellipsoidal shape 

of the seam does not represent the state of strain in the peridotite. However, structural 

elements (foliation and lineation) defi ned by the ellipsoidal seam correspond to the lattice 

preferred orientation of olivine. This implies that principle axes of strain for the ellipsoidal 

seam have close relation to the bulk-strain in the peridotite. Strain analysis of ellipsoidal 

seams is benefi cial to compare differences of the strain state between the Upper and Lower 

Zones.
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3. Methods

　Hand-specimen samples of the symplectite-bearing spinel lherzolite (and some plagioclase 

lherzolite) were collected from all structural units covering the whole massif area, and 

polished on the surface with #800 carborundum. The XZ (foliation normal, lineation parallel) 

and YZ (foliation normal, lineation normal) polished sections were directly scanned on an 

image-scanner attached with a Macintosh-computer in order to obtain digital photo-images. 

　Obtained photo-images were opened with the Adobe-Photoshop application and the 

pyroxene-spinel seams were traced on the other layer. The traced-image was individually 

saved as an 8-bit TIFF fi le. Strain analyses of the seam on XZ and YZ planes were made by 

NIH-Image application. Best-fit ellipses for distinct particles (seams) were calculated by 

“Analyze Particles” command. “Ellipse major axis, Ellipse minor axis, and Angle” were 

selected as parameters to be measured.

　Major and minor axes of each seam on the XZ and YZ plane plot on the graph of X-Z and 

Y-Z relationships. Average ratio X/Z and Y/Z were obtained by least squares method. The X/

Y ratio is mathematically calculated as X/Y=(X/Z)/(Y/Z). A strain state is represented on the 

Flinn diagram (Flinn, 1962). A strain-state parameter, value of k is,
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Fig. 2.　Scanning photographic-images of polished surfaces and traced-images of ellipsoidal pyroxene-spinel seams.
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where a=X/Y and b=Y/Z.

　The line k=1 characterizes all plane strain ellipsoids. The region for which 0 ≤ k<1 and 1<k

≤∞ show constrictional and fl attening strain, respectively.

　The distance of a data point from the origin (1:1) is indicative of the overall strain. The 

magnitude of the overall strain is expressed as,
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Table 1.　Obtained strain parameters by strain-analysis of pyroxene-spinel seams.
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4. Results

4.1 Equigranular Zone

　Five samples from the Equigranular Zone were measured. The ratio X/Z disperses 

ranging 13 ~ 33. The ratio Y/Z exceeds 6 except one sample and the highest ratio is 9.6. All 

Fig. 3.　 Axial ratios of pyroxene-spinel seams in the Equigranular Zone. Solid diagonal lines were obtained 
by least square method.
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sample plot in the fi eld of fl attening (Fig. 3, Table 1). The value of k ranges 0.14 ~ 0.52. The 

strain magnitude parameter fs ranges 1.87 ~ 2.49.

4.2 Internal Shear Zone

　Seven samples from the Internal Shear Zone are measured. The ratio X/Z disperses 

ranging 13 ~ 29. The ratio Y/Z exceed almost 6 and the highest ratio is 11.57. All sample plot 

in the field of flattening (Fig. 4, Table 1). The value of k ranges 0.14 ~ 0.38. The strain 

Fig. 4.　 Axial ratios of pyroxene-spinel seams in the Internal Shear Zone. Solid diagonal lines were obtained 
by least square method.
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magnitude parameter fs ranges 1.85 ~ 2.45.

4.3 Transitional Zone

　Three samples from the Transitional Zone are measured. The ratio X/Z ranges 12 ~ 20. 

The ratio Y/Z ranges 5 ~ 9. All sample plot in the fi eld of fl attening (Fig. 5, Table 1). The 

value of k ranges 0.14 ~ 0.27. The strain magnitude parameter fs ranges 1.83 ~ 2.18.

4.4 Porphyroclastic Zone

　Thirteen samples from the Porphyroclastic Zone are measured. Since three samples at the 

southwestern part of the Horoman peridotite complex shows a dif ferent tendency, it is 

separately described from the samples in the Horoman River part.

　Horoman River part : The ratio X/Z ranges 10 ~ 19. The ratio Y/Z are lower than 6. All 

sample plot in the fi eld of fl attening (Fig. 6, Table 1). The value of k ranges 0.15 ~ 0.79. The 

strain magnitude parameter fs ranges 1.72 ~ 2.08.

Fig. 5.　 Axial ratios of pyroxene-spinel seams in the Internal Shear Zone. Solid diagonal lines were obtained 
by least square method.
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　Southeastern part : The ratio X/Z ranges 12 ~ 21. The ratio Y/Z exceeds 7. All sample plot 

in the field of flattening (Fig. 6, Table 1). The value of k ranges 0.08 ~ 0.30. The strain 

magnitude parameter fs ranges 1.93 ~ 2.16.

Fig. 6.　 Axial ratios of pyroxene-spinel seams in the Porphyroclastic Zone. Solid diagonal lines were 
obtained by least square method.
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4.5 Basal Shear Zone

　Three samples from the Basal Shear Zone are measured. The ratio X/Z ranges 14 ~ 15. 

The ratio Y/Z ranges 3 ~ 7. All sample plot in the fi eld of fl attening (Fig. 7, Table 1). The 

value of k ranges 0.23 ~ 0.98. The strain magnitude parameter fs ranges 1.87 ~ 1.97.

5. Discussion

5.1. Difference of strain in each structural unit

　Strain state and magnitude are clearly represented on a Flinn diagram. The ellipsoidal 

seams from the all structural units plot in the fi eld of fl attening strain (Fig. 8). Most samples 

shows strong fl attening strain (k < 0.6), whereas some samples in the Porphyroclastic Zone 

and the Basal Shear Zone show more or less plane strain (0.6 < k < 1.0). The most important 

features recognized in the Flinn diagram is that the seams in the Equigranular Zone and the 

Fig. 6.　(Continued)
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Fig. 7.　 Axial ratios of pyroxene-spinel seams in the Basal Shear Zone. Solid diagonal lines were obtained 
by least square method.

Fig. 8.　 Flinn diagram representing strain state derived from the pyroxene-spinel seams. Note that seams in 
the Equigranular Zone and the Internal Shear Zone plot relatively far from the origin (1:1) than that 
in the Porphyroclastic Zone and the Basal Shear Zone.
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Internal Shear Zone plot relatively far from the origin (1:1) than those in the Porphyroclastic 

Zone and the Basal Shear Zone. There is no apparent difference recognized between the 

Equigranular Zone and the Internal Shear Zone, neither between the Porphyroclastic Zone 

and the Basal Shear Zone. The strain magnitude parameters in the Equigranular Zone and 

the Internal Shear Zone are also higher than those in the Porphyroclastic Zone and the Basal 

Shear Zone (Fig. 9). These features suggest that the magnitude of overall deformation is 

larger in the Equigranular Zone and the Internal Shear Zone than the Porphyroclastic Zone 

and the Basal Shear Zone. It is consistent to the conclusion that the deformation in the 

Equigranular Zone and the Internal Shear Zone had overprinted on the Porphyroclastic Zone 

(Sawaguchi, 2004).

Fig. 9.　Variations of strain parameters (k value and  strain magnitude ) in each structural unit.
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　The representative axial ratio (X:Y:Z) can be calculated from the least square fitting 

method on the graph-plots (Y/Z versus X/Y, and X/Z versus X/Y). The group of the 

Equigranular Zone and the Internal Shear Zone shows X:Y:Z = 29.67:11.00:1, and that of the 

Porphyroclastic Zone and the Basal Shear Zone shows X:Y:Z = 22.46:7.69:1. This also implies 

the larger strain in the Equigranular Zone and the Internal Shear Zone.

5.2 Estimation of thinning ratio

　Here we assume the ellipsoidal seam in the Equigranular Zone and the Internal Shear 

Zone was equivalent to that in the Porphyroclastic Zone and the Basal Shear Zone before the 

overprinting of deformation, and estimate an increment of strain due to the overprinting of 

deformation. Since no chemical reaction is inferred between seams and olivine matrix except 

initial breakdown of pyrope garnet reacted with olivine (Takahashi and Arai, 1987, Obata et 

al., 1997), the volume must be unchanged during the deformation. The representative axial 

ratio X:Y:Z in the group of the Equigranular Zone and the Internal Shear Zone is converted 

to 24.03:9.00:0.81 by volume-constant assumption (Fig. 10). The extensions along each 

principal strain axes are; ex= (ΔX/X) = ((24.03-22.46)/22.46) = 7 %, ey= (ΔY/Y) = ((9.00-

7.69)/7.69) = 17 %, ez= (ΔZ/Z) = ((0.81-1)/1) = -19 %. Thus thinning ratio normal to the 

Fig. 10.　 Schematic illustration for representative strain ellipsoid in the Porphyroclastic / Basal Shear Zones 
and the Equigranular / Internal Shear Zones, respectively. 
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foliation (ez) is 19 %. The thickest dunite layer of the SDW suite at the Upper/Lower Zone 

boundary can be pursued from the west (Otsukifushi-zawa River) to the east (Sarushunai-

zawa River) in the complex, and thickness varies from 15 m at the Horoman River to 8.6 m at 

the Taki-no-sawa River (Takahashi, 1997). The SDW layer in the Taki-no-sawa River section 

underwent the overprinting of deformation in the Internal Shear Zone (Sawaguchi, 2001). 

This thinning ratio about 42 % ((8.6-15)/15) inferred from the geological observation is twice 

as large as that inferred from the strain analysis of the ellipsoidal seam. The reason for the 

dif ference in estimation is, (i) observational errors because of averaging the strain in 

different samples, (ii) more competent seam refl ect less strain than the overall strain, (iii) 

dif ference of strain state between the Equigranular / Internal Shear Zones and the 

Porphyroclastic / Basal Shear Zones prior to the later overprinting of deformation.

　Thinning ratio inferred here shows only the increment of strain due to the overprinting of 

deformation in the Equigranular Zone and the Internal Shear Zone. The discriminated 

difference between the Upper zone and the Lower Zone is in the thickness of lithologic 

layering (Niida, 1974). Since the Upper Zone has been overprinted of the later southward 

deformation whereas the Lower Zone has not, the difference in the thickness of lithologic 

layering might be responsible for the thinning of the Upper Zone due to the overprinting 

southward deformation. However the 19 % of thinning ratio is not enough to explain the 

difference in the thickness of the lithologic layering. Total thinning ratio of the Upper Zone 

must be much higher than 19 %. The thinning ratio of 19 % inferred from the strain analysis 

of the ellipsoidal seam is a minimum estimation for thinning of the lithologic layering in the 

Upper Zone.

6. Conclusions

　Although the strain analysis of ellipsoidal pyroxene-spinel seams is consistent to that the 

Horoman peridotites from the Equigranular and Internal Shear Zones were overprinted by a 

top-to-the-south deformation, estimated thinning ratio of 19 % is not adequate to explain the 

difference of the litho logical thickness between the Upper and Lower Zones. It requires 

further understandings of strain partitioning between the peridotites and gabbros.  
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* In Japanese

** In Japanese with English abstract

要　旨

幌満かんらん岩中の輝石 -スピネル集合体の歪解析

澤口　隆

　北海道日高変成帯に分布する幌満かんらん岩体の層状構造の発達様式の違いを理解する
ために、幌満かんらん岩中に含まれる輝石 -スピネル集合体の歪解析を行った。上盤が南
方向に移動する剪断センスを持った変形を重複している等粒状帯および内部剪断帯の試料
は、重複変形を受けていないポーフィロクラスティック帯および基底剪断帯の試料と比較
して、約 19 %の短縮を被っていることが明らかとなった。


