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Abstract

We investigate a variant of the two-player voluntary contribution game studied by Compte and Jehiel [2003].

Compte and Jehiel assume that alternate contributions for completing a joint project are sunk costs and agents

cannot commit in advance to a specific sequence of contributions, as is also assumed in Admati and Perry [1991].

We slightly change their assumption as follows: agents can commit to proposals such as: “When it comes to

a situation where my final payment of a certain amount completes the project, I will pay the amount then for

sure.” Although such a commitment to the final step seems a generous proposal at a glance, the commitment

gives the proposer a great advantage in his equilibrium payoff.

1. Introduction

This paper investigates a two-player voluntary contribution game in which agents can commit in ad-

vance to make a certain amount of payment at the final step of completing a joint project before the

agents start alternate contributions that become sunk costs. The game might be regarded as a com-

bination of the contribution game and the subscription game mentioned in Admati and Perry [1991].

They explain the difference between the contribution game and the subscription game as follows. In

the contribution game, commitments and enforceable contracts are not available, and the cost of con-

tributions is sunk. In the subscription game, agents can make conditional commitments to contribute

in the future, and the cost of contributions is borne only when enough contributions are pledged to

complete the project.
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In their analysis of the contribution game, Admati and Perry’s main concern is a pattern of con-

tributions. They show that contributions are made in small steps along the equilibrium path. They

suggest that the sunk character of contributions is a source of such a step-by-step pattern of contri-

butions. However, Compte and Jehiel [2003] point out that Admati and Perry’s result depends on

convexity of a cost function and symmetry of agents’ valuations of the project. Compte and Jehiel

introduce a linear cost function and asymmetric valuations into Admati and Perry’s contribution game,

and show that at most two large contributions are realized in equilibrium.

Aside from the pattern of contributions, the present paper concerns how agents split the social

surplus in equilibrium. In the equilibrium of Compte and Jehiel’s game, the agent with the lower

valuation gets all the surplus generated by completion of the project while the agent with the higher

valuation gets a payoff of zero, which seems an unfair way of splitting the surplus. In the present paper,

we introduce a different contribution protocol into Compte and Jehiel’s model, and investigate how the

equilibrium payoff profile changes. Specifically, our game gives agents options to make a proposal such

as: “When it comes to a situation where my final payment of a certain amount completes the project,

I will pay the amount then for sure.” After making such proposals, the agents start an alternate

contribution game. We assume that the agents can commit to the proposals at the final step.

In equilibrium of our game, agents split the social surplus in the following way. When only one

agent has an option to propose, the proposer gets all the surplus while the other agent without the

option gets a payoff of zero. On the other hand, when both agents can propose, the surplus is split

relatively fairly between the two in the sense that the both agents get positive payoffs, although the

second mover’s payoff exceeds that of the first mover. Our result indicates that the commitment to the

final step gives an agent a great advantage in his equilibrium payoff.

The remaining part of this paper is organized as follows. Section 2 explains our model of the

two-player contribution game. Section 3 summarizes the previous results in the literature. Section 4

investigates the case where only one agent has an option to commit to the final step while Section 5

investigates the case where both agents have such options. Section 6 provides some concluding remarks.

2. The Model

We investigate a variant of the two-player voluntary contribution game studied by Compte and Je-

hiel [2003].

Two agents, agents 1 and 2, are the players of the game. They voluntarily contribute to complete a

project, which costs K > 0. The project is a public good for the agents. On completion of the project,
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agent i obtains a benefit Vi > 0, which is called agent i’s valuation of the project. Following Compte

and Jehiel [2003], we focus on the case where max{V1, V2} < K < V1 + V2, which means that neither

agent can afford to complete the project alone and completion of the project is socially desirable.

The game is played in periods t = 0, 1, 2, . . .. In period 0, each agent i can simultaneously make a

proposal such as: “When it comes to a situation where my final payment of Ci ≥ 0 at the end of period

t ≥ 1 completes the project, I will pay the amount to complete the project at the end of period t.” We

assume that the agents can commit to the proposals. At the end of period 0, (C1, C2) is observed by

them.

From period 1, they contribute alternately as in the game studied by Compte and Jehiel [2003].

Agent 1 contributes in periods with positive odd numbers while agent 2 contributes in periods with

positive even numbers until the project is completed. Let m(t) denote the mover in period t ≥ 1. That

is, m(t) = 1 if t is a positive odd number while m(t) = 2 if t is a positive even number.

In the middle of period t ≥ 1, agent i with i = m(t) makes a contribution of an amount of cti ≥ 0.

Since two agents take turns in making contributions, we require that cti = 0 if i ̸= m(t): this constraint

on (ct1, c
t
2) together with c01 = c02 = 0 for notational convenience is called the feasibility for contributions.

We assume that contributions are non-refundable even if the project is not completed. So, contributions

become sunk costs for the agents. At the end of period t, (ct1, c
t
2) is observed by them.

The remaining amount required for completion at the end of period t is denoted by

xt = K − C1 − C2 −
t∑

τ=0

(cτ1 + cτ2).

If xt ≤ 0 at the end of period t ≥ 1, then agents 1 and 2 fulfill their proposals by paying C1 and C2,

respectively, at the end of period t.1

Let T denote the period of completion of the project, that is, T is the least natural number that

satisfies the condition xT ≤ 0. When the project is completed, the game ends. If the project is not

completed forever due to an insufficient amount of contributions, then we let T = ∞, and the game

continues forever.

Let ht denote a history at the beginning of period t: we define h0 = ∅ and ht = {(C1, C2), (c
0
1, c

0
2), . . . ,

(ct−1
1 , ct−1

2 )} for t ≥ 1. A history ht is non-terminal if xt−1 > 0. A terminal history is denoted by

hT+1; it is an infinite sequence or a history with xT ≤ 0.

We focus on pure strategies. Agent i’s strategy si is a function si(h
t) ≥ 0 that associates with

1In our setting, even if x0 ≤ 0, agents fulfill their proposals at the end of period 1.
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each non-terminal history ht a non-negative real number. We interpret si(h
0) as Ci while we interpret

si(h
t) as cti for t ≥ 1. By the feasibility for contributions, we require that si(h

t) = 0 if i ̸= m(t). A list

of strategies (si, sj) with i ̸= j is called a strategy profile.

Both agents discount benefits and contributions using a discount factor δ such that 0 < δ < 1.

Agent i’s payoff evaluated at the end of period 1 for a strategy profile (s1, s2) is given by

ui(s1, s2) = δT−1(Vi − Ci)−
T∑

t=1

δt−1cti

where Ci and cti are variables that appear in the terminal history hT+1 realized by the strategy profile

(s1, s2).

We look for subgame-perfect equilibria of the game. A strategy profile (s1, s2) is a subgame-perfect

equilibrium of the game if, for every subgame of the game, the strategy profile induced by (s1, s2) is a

Nash equilibrium of the subgame.2

Given a history h1 = {(C1, C2), (c
0
1, c

0
2)}, let V̄1 = V1 − C1, V̄2 = V2 − C2, and K̄ = K − C1 − C2.

3

We denote a subgame that starts at a history h1 at the beginning of period 1 by a list (V̄1, V̄2, K̄).

3. The Previous Results

This section summarizes the results in the previous studies in the literature as facts in the context

of our model. Throughout the section, we assume that the admissible strategies for each agent i are

restricted in such a way that Ci = 0, i.e., each agent does not have an option to make a proposal to

commit to the final step. We may regard that the previous studies assume C1 = C2 = 0 and analyze

the subgame (V1, V2,K) starting in period 1 in our model. The facts discussed in this section apply to

the subgame (V1, V2,K) as well as all its subgames starting at a non-terminal history.

Suppose that, for t ≥ 1, we have a non-terminal history ht = {(C1, C2), (c
0
1, c

0
2), . . . , (c

t−1
1 , ct−1

2 )}.

Strategy s̄∗
i for agent i in the game such that Vi ≤ Vj, i ̸= j, and C1 = C2 = 0.

We fix s̄∗i (h
0) = 0 by the restriction Ci = 0. When i ̸= m(t), we require that s̄∗i (h

t) = 0 by the

feasibility for contributions. When i = m(t), the following descriptions define s̄∗i (h
t).

(i) If xt−1 ≤ 0, then let s̄∗i (h
t) = 0.

(ii) If 0 < xt−1 ≤ (1− δ)Vi, then let s̄∗i (h
t) = xt−1.

2For the formal definitions of subgame-perfect equilibria and Nash equilibria, readers are referred to Osborne
and Rubinstein [1994].

3It is possible that V̄1 ≤ 0, V̄2 ≤ 0, or K̄ ≤ 0.
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(iii) If (1− δ)Vi < xt−1 ≤ Vj , then let s̄∗i (h
t) = 0.

(iv) If Vj < xt−1 ≤ δVi + Vj , then let s̄∗i (h
t) = xt−1 − Vj .

(v) If δVi + Vj < xt−1, then let s̄∗i (h
t) = 0.

Strategy s̄∗∗
j for agent j in the game such that Vi ≤ Vj, i ̸= j, and C1 = C2 = 0.

We fix s̄∗∗j (h0) = 0 by the restriction Cj = 0. When j ̸= m(t), we require that s̄∗∗j (ht) = 0 by the

feasibility for contributions. When j = m(t), the following descriptions define s̄∗∗j (ht).

(i) If xt−1 ≤ 0, then let s̄∗∗j (ht) = 0.

(ii) If 0 < xt−1 ≤ Vj , then let s̄∗∗j (ht) = xt−1.

(iii) If Vj < xt−1, then let s̄∗∗j (ht) = 0.

We first note that the following Fact 1 is essentially the same as Proposition C2 in Marx and

Matthews [2000]; by applying their arguments in the proof of their proposition, the fact is obtained.

Fact 1. When V1 = V2, the strategy profiles (s̄∗1, s̄
∗∗
2 ) and (s̄∗∗1 , s̄∗2) are subgame-perfect equilibria

of the game with the restrictions C1 = C2 = 0. Accordingly, the strategy profiles induced by (s̄∗1, s̄
∗∗
2 )

and (s̄∗∗1 , s̄∗2) are subgame-perfect equilibria of the subgame (V1, V2,K) and all its subgames starting

at a non-terminal history.

When V1 = V2, there are multiple equilibria in the game. In fact, more equilibria can be obtained

by changing agents’ choices between indifferent alternatives at some histories.

We next note that the arguments in the proof of Proposition 1 in Compte and Jehiel [2003] show

the following.

Fact 2. When Vi < Vj , the strategy profile (s̄∗i , s̄
∗∗
j ) is a subgame-perfect equilibrium of the game

with the restrictions C1 = C2 = 0. Accordingly, the strategy profile induced by (s̄∗i , s̄
∗∗
j ) is a subgame-

perfect equilibrium of the subgame (V1, V2,K) and all its subgames starting at a non-terminal history.

In this case Vi < Vj also, there are multiple equilibria in the game; other equilibria can be obtained

by changing agents’ choices between indifferent alternatives off the equilibrium paths.

However, the equilibrium path is unique and common among all the subgame-perfect equilibria

particularly when Vi < Vj < K < δVi + Vj . Arguments on the equilibrium path are summarized in

Facts 3 through 8; these facts are obtained in the proof of Proposition 1 in Compte and Jehiel [2003].
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Fact 3. For each agent i, if 0 < xt−1 < (1− δ)Vi for a subgame starting at a non-terminal history

ht with i = m(t), then for any subgame-perfect equilibrium of the subgame, the equilibrium path is

such that cti = xt−1, and the period of completion is t.

Fact 4. When Vi < Vj , if (1− δ)Vi < xt−1 < Vj for a subgame starting at a non-terminal history

ht with j = m(t), then for any subgame-perfect equilibrium of the subgame, the equilibrium path is

such that ctj = xt−1, and the period of completion is t.

Fact 5. When Vi < Vj , if (1− δ)Vi < xt−1 < Vj for a subgame starting at a non-terminal history

ht with i = m(t), then for any subgame-perfect equilibrium of the subgame, the equilibrium path is

such that cti = 0 and ct+1
j = xt−1, and the period of completion is t+ 1.

Fact 6. When Vi < Vj , if Vj < xt−1 < δVi + Vj for a subgame starting at a non-terminal history

ht with i = m(t), then for any subgame-perfect equilibrium of the subgame, the equilibrium path is

such that cti = xt−1 − Vj and ct+1
j = Vj , and the period of completion is t+ 1.

Fact 7. When Vi < Vj , if Vj < xt−1 < δVi + Vj for a subgame starting at a non-terminal history

ht with j = m(t), then for any subgame-perfect equilibrium of the subgame, the equilibrium path is

such that ctj = 0, ct+1
i = xt−1 − Vj , and ct+2

j = Vj , and the period of completion is t+ 2.

Fact 8. When Vi < Vj , if δVi+Vj < xt−1 for a subgame starting at a non-terminal history ht, then

for any subgame-perfect equilibrium of the subgame, the equilibrium path is such that cτi = cτj = 0

for all τ ≥ t, i.e., no agent contributes a positive amount thereafter and the project is not completed

forever.

We note that when the equilibrium path is unique, the equilibrium payoff profile is uniquely deter-

mined. Particularly, when Facts 6 and 7 apply, the equilibrium payoff profile is the following.

Fact 9. If V1 < V2 < K < δV1+V2, the equilibrium payoff profile (U∗
1 , U

∗
2 ) is such that (U∗

1 , U
∗
2 ) =

(δV1 + V2 − K, 0), which is realized along the equilibrium path, c11 = K − V2 and c22 = V2, with the

period of completion T = 2.

Fact 10. If V2 < V1 < K < V1+δV2, the equilibrium payoff profile (U∗
1 , U

∗
2 ) is such that (U∗

1 , U
∗
2 ) =

(0, δV1 + δ2V2 − δK), which is realized along the equilibrium path, c11 = 0, c22 = K − V1, and c31 = V1,

with the period of completion T = 3.

Before closing this section, we point out two properties of the equilibria of the game with the
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restrictions C1 = C2 = 0.

First, it is possible that the project is not completed even if completion of the project is socially

desirable. That is, the project is not completed when Vi < Vj < δVi + Vj < K < V1 + V2.

Second, the agent with the lower valuation gets all the surplus while the agent with the higher

valuation gets a payoff of zero. That is, agent 2’s payoff is zero when V1 < V2 by Fact 9 while agent 1’s

payoff is zero when V2 < V1 by Fact 10.

4. The Results for the One-Side Case

We prepare two lemmas before stating our propositions in this section. We note that these lemmas

hold even when C1 ≥ 0 and C2 ≥ 0, i.e., both agents have options to make a proposal to commit to

the final step. These lemmas will be used also in the next section.

Lemma 1. For any strategy profile (s1, s2) which realizes a terminal history hT+1 = {(C1, C2),

(c01, c
0
2), . . . , (c

T
1 , c

T
2 )}, the payoff profile (u1(s1, s2), u2(s1, s2)) satisfies the following:

u1(s1, s2) + u2(s1, s2) ≤ δT−1(V1 + V2 −K).

Proof. Since completion of the project is socially desirable by the assumption of our model, we

have V1 +V2 −K > 0. If T = ∞, i.e., if the project is not completed forever, then each agent i’s payoff

ui(s1, s2) cannot be positive and hence the inequality in the lemma clearly holds.

If T < ∞, then we have

u1(s1, s2) + u2(s1, s2) = δT−1(V1 + V2 − C1 − C2)−
T∑

t=1

δt−1(ct1 + ct2)

≤ δT−1(V1 + V2 − C1 − C2)−
T∑

t=1

δT−1(ct1 + ct2)

= δT−1(V1 + V2 − C1 − C2 −
T∑

t=0

(ct1 + ct2))

≤ δT−1(V1 + V2 −K)

since δ < 1, ct1 ≥ 0, ct2 ≥ 0, c01 = c02 = 0, and xT = K − C1 − C2 −
∑T

τ=0(c
τ
1 + cτ2) ≤ 0.

Lemma 2. For any subgame-perfect equilibrium (s∗1, s
∗
2) of the game, the equilibrium payoffs u1(s

∗
1, s

∗
2)

and u2(s
∗
1, s

∗
2) are non-negative.
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Proof. If agent i chooses a strategy si such that si(h
t) = 0 for any non-terminal history ht, then

agent i can secure a payoff of zero, regardless of his opponent’s strategy. So, we have ui(s
∗
i , s

∗
j ) ≥

ui(si, s
∗
j ) ≥ 0.

We now investigate our model with the restriction in which only one agent has an option to make

a proposal to commit to the final step. We first consider the game where only agent 1 has the option.

That is, the admissible strategies for agent 1 are such that C1 ≥ 0 while the admissible strategies for

agent 2 are restricted in such a way that C2 = 0. Our proposition says that the equilibrium payoff

profile and the equilibrium path are uniquely determined, regardless of whether V1 < V2 or not.

Proposition 1. If there is any subgame-perfect equilibrium (s∗1, s
∗
2) in the game with the restrictions

C1 ≥ 0 and C2 = 0, the equilibrium payoff profile (U∗
1 , U

∗
2 ) ≡ (u1(s

∗
1, s

∗
2), u2(s

∗
1, s

∗
2)) is such that

(U∗
1 , U

∗
2 ) = (δ(V1 + V2 −K), 0), which is realized along the equilibrium path, C1 = K − V2, c

1
1 = 0, and

c22 = V2, with the period of completion T = 2.

Proof. Since we have the restriction C2 = 0, i.e., since agent 2 does not have an opportunity to

contribute before period 2, if ever T = 1, then it must be the case that agent 1 bears all the cost of

the project, which makes agent 1’s payoff negative since V1 < K. So, we have T ≥ 2 in equilibrium by

Lemma 2, and hence U∗
1 + U∗

2 ≤ δ(V1 + V2 −K) by Lemma 1 and our assumption δ < 1.

We now choose ε > 0 and let C1 = K−V2+ε, V̄1 = V1−C1, and K̄ = K−C1. Since V1 < K < V1+V2

by our assumption, we can choose sufficiently small ε so that 0 < V̄1 < V2 and (1− δ)V̄1 < K̄ < V2.

Consider a subgame-perfect equilibrium of the subgame (V̄1, V2, K̄) starting in period 1. We note

that the previous results in Section 3 apply to the subgame; the remaining amount required for com-

pletion is K̄ > 0, and on completion of the project, agent 1 obtains a net benefit V̄1 > 0 while agent 2

obtains a benefit V2 > 0. By Fact 5, the equilibrium path in the subgame is such that c11 = 0 and

c22 = K̄, and hence agent 1’s equilibrium payoff U∗∗
1 is such that U∗∗

1 = δV̄1 = δ(V1 + V2 −K − ε).

Next, consider the subgame-perfect equilibrium (s∗1, s
∗
2) of the whole game. Since agent 1 has an

option to choose C1 = K − V2 + ε in period 0, his equilibrium payoff U∗
1 must be such that U∗

1 ≥ U∗∗
1 .

Since we can have ε > 0 arbitrarily close to 0, it must be the case that U∗
1 ≥ δ(V1 + V2 −K).

Considering the above inequalities, U∗
1 + U∗

2 ≤ δ(V1 + V2 −K), U∗
1 ≥ δ(V1 + V2 −K), and U∗

2 ≥ 0

by Lemma 2, we obtain the result (U∗
1 , U

∗
2 ) = (δ(V1 + V2 − K), 0). Furthermore, we obtain T = 2

by Lemma 1 and our assumption δ < 1. The results U∗
2 = 0 and T = 2 imply that c22 = V2 on the

equilibrium path.
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We are left to show C1 = K − V2 and c11 = 0 on the equilibrium path. Since T = 2 and c22 = V2, we

have C1 + c11 ≥ K − V2. We recall that U∗
1 = δ(V1 − C1) − c11. By the optimality of agent 1’s choices

on the equilibrium path, we have C1 + c11 = K − V2. So, U
∗
1 = δ(V1 + V2 −K)− (1− δ)c11, which gets

bigger as c11 gets smaller, and hence the inequality c11 ≥ 0 must bind. Therefore, C1 = K − V2 and

c11 = 0 are the optimal choices for agent 1.

We next consider the game where only agent 2 has an option to propose.

Proposition 2. If there is any subgame-perfect equilibrium (s∗1, s
∗
2) in the game with the restrictions

C1 = 0 and C2 ≥ 0, the equilibrium payoff profile (U∗
1 , U

∗
2 ) ≡ (u1(s

∗
1, s

∗
2), u2(s

∗
1, s

∗
2)) is such that

(U∗
1 , U

∗
2 ) = (0, V1 + V2 − K), which is realized along the equilibrium path, C2 = K − V1 and c11 = V1,

with the period of completion T = 1.

Proof. By Lemma 1 and our assumption δ < 1, we have U∗
1 + U∗

2 ≤ V1 + V2 −K.

We now choose ε > 0 and let C2 = K−V1+ε, V̄2 = V2−C2, and K̄ = K−C2. Since V2 < K < V1+V2

by our assumption, we can choose sufficiently small ε so that 0 < V̄2 < V1 and (1− δ)V̄2 < K̄ < V1.

Consider a subgame-perfect equilibrium of the subgame (V1, V̄2, K̄) starting in period 1. We note

that the previous results in Section 3 apply to the subgame; the remaining amount required for com-

pletion is K̄ > 0, and on completion of the project, agent 1 obtains a benefit V1 > 0 while agent 2

obtains a net benefit V̄2 > 0. By Fact 4, the equilibrium path in the subgame is such that c11 = K̄, and

hence agent 2’s equilibrium payoff U∗∗
2 is such that U∗∗

2 = V̄2 = V1 + V2 −K − ε.

Next, consider the subgame-perfect equilibrium (s∗1, s
∗
2) of the whole game. Since agent 2 has an

option to choose C2 = K − V1 + ε in period 0, his equilibrium payoff U∗
2 must be such that U∗

2 ≥ U∗∗
2 .

Since we can have ε > 0 arbitrarily close to 0, it must be the case that U∗
2 ≥ V1 + V2 −K.

Considering the above inequalities, U∗
1 + U∗

2 ≤ V1 + V2 − K, U∗
2 ≥ V1 + V2 − K, and U∗

1 ≥ 0 by

Lemma 2, we obtain the result (U∗
1 , U

∗
2 ) = (0, V1+V2−K). Furthermore, we obtain T = 1 by Lemma 1

and our assumption δ < 1. The results (U∗
1 , U

∗
2 ) = (0, V1 + V2 −K) and T = 1 imply that c11 = V1 and

C2 = K − V1 on the equilibrium path.

Propositions 1 and 2 assume the existence of a subgame-perfect equilibrium (s∗1, s
∗
2). We next show

that the following strategy profile (ŝ∗i , ŝ
∗∗
j ) is in fact a subgame-perfect equilibrium of the game where

agent i can choose Ci ≥ 0 in period 0 while agent j ̸= i cannot.

Suppose that, for t ≥ 1, we have a non-terminal history ht = {(C1, C2), (c
0
1, c

0
2), . . . , (c

t−1
1 , ct−1

2 )}

with the restrictions Ci ≥ 0 and Cj = 0. We let V̄i = Vi − Ci for notational convenience.
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Strategy ŝ∗
i for agent i in the game with the restrictions Ci ≥ 0, Cj = 0, and i ̸= j.

Let ŝ∗i (h
0) = K−Vj . When i ̸= m(t), we require that ŝ∗i (h

t) = 0 by the feasibility for contributions.

When i = m(t), the following descriptions define ŝ∗i (h
t).

(i) If xt−1 ≤ 0, then let ŝ∗i (h
t) = 0.

(ii) If V̄i ≤ Vj and 0 < xt−1 ≤ (1− δ)V̄i, then let ŝ∗i (h
t) = xt−1.

(iii) If V̄i ≤ Vj and (1− δ)V̄i < xt−1 ≤ Vj , then let ŝ∗i (h
t) = 0.

(iv) If V̄i ≤ Vj and Vj < xt−1 ≤ δV̄i + Vj , then let ŝ∗i (h
t) = xt−1 − Vj .

(v) If V̄i ≤ Vj and δV̄i + Vj < xt−1, then let ŝ∗i (h
t) = 0.

(vi) If Vj < V̄i and 0 < xt−1 ≤ V̄i, then let ŝ∗i (h
t) = xt−1.

(vii) If Vj < V̄i and V̄i < xt−1, then let ŝ∗i (h
t) = 0.

Strategy ŝ∗∗
j for agent j in the game with the restrictions Ci ≥ 0, Cj = 0, and i ̸= j.

We fix ŝ∗∗j (h0) = 0 by the restriction Cj = 0. When j ̸= m(t), we require that ŝ∗∗j (ht) = 0 by the

feasibility for contributions. When j = m(t), the following descriptions define ŝ∗∗j (ht).

(i) If xt−1 ≤ 0, then let ŝ∗∗j (ht) = 0.

(ii) If Vj < V̄i and 0 < xt−1 ≤ (1− δ)Vj , then let ŝ∗∗j (ht) = xt−1.

(iii) If Vj < V̄i and (1− δ)Vj < xt−1 ≤ V̄i, then let ŝ∗∗j (ht) = 0.

(iv) If Vj < V̄i and V̄i < xt−1 ≤ δVj + V̄i, then let ŝ∗∗j (ht) = xt−1 − V̄i.

(v) If Vj < V̄i and δVj + V̄i < xt−1, then let ŝ∗∗j (ht) = 0.

(vi) If V̄i ≤ Vj and 0 < xt−1 ≤ Vj , then let ŝ∗∗j (ht) = xt−1.

(vii) If V̄i ≤ Vj and Vj < xt−1, then let ŝ∗∗j (ht) = 0.

Proposition 3. The strategy profile (ŝ∗i , ŝ
∗∗
j ) is a subgame-perfect equilibrium of the game with the

restrictions Ci ≥ 0, Cj = 0, and i ̸= j.

Proof. Suppose that any Ci ≥ 0 is given and Cj = 0 is fixed. Let V̄i = Vi − Ci and K̄ = K − Ci.

Take any non-terminal history ht with t ≥ 1. We will investigate the subgame starting at ht in the

following three cases.

First, consider the case where xt−1 ≤ 0. If t ≥ 2, then the project is completed in period t − 1

and the game ends at the period, so no subgame starts at ht. If t = 1, it is optimal for agent 1 to
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choose c11 = 0 at h1 because choosing c11 > 0 simply lowers his payoff, considering that the project

is completed and the game ends even if he contributes nothing in period 1. This optimal choice for

agent 1 is described in Item (i) of the strategy ŝ∗1 or ŝ∗∗1 . So, the strategy profile induced by (ŝ∗i , ŝ
∗∗
j )

is a subgame-perfect equilibrium of the subgame starting at h1, no matter whether i = 1 or j = 1.

Second, consider the case where xt−1 > 0 and V̄i ≤ 0. Since agent i obtains a non-positive net

benefit on completion of the project, it is optimal for agent i to contribute nothing at ht and its

continuation histories. This optimal choice for agent i is described in the strategy ŝ∗i ; Item (iii) or (v)

in the descriptions of ŝ∗i applies here.4 On the other hand, agent j obtains a positive benefit Vj on

completion of the project. Since his opponent is expected to contribute nothing in the future, if agent j

is on the move at ht or its continuation history, it is optimal for him to contribute enough and complete

the project immediately as long as the remaining amount does not exceed Vj . This optimal choice for

agent j is described in the strategy ŝ∗∗j ; Item (vi) or (vii) in the descriptions of ŝ∗∗j applies. Therefore,

the strategy profile induced by (ŝ∗i , ŝ
∗∗
j ) is a subgame-perfect equilibrium of the subgame starting at ht.

Third, consider the case where xt−1 > 0 and V̄i > 0. In this case, the facts discussed in the previous

section apply to the subgame starting at ht. Particularly, we focus on Facts 1 and 2 and the strategy

profile (s̄∗i , s̄
∗∗
j ) in the previous section. When V̄i ≤ Vj , the strategy ŝ∗i is defined in the same way as s̄∗i

while the strategy ŝ∗∗j is defined in the same way as s̄∗∗j . When Vj < V̄i, the strategy ŝ∗i is defined in

the same way as s̄∗∗j while the strategy ŝ∗∗j is defined in the same way as s̄∗i . So, by Facts 1 and 2, the

strategy profile induced by (ŝ∗i , ŝ
∗∗
j ) is a subgame-perfect equilibrium of the subgame starting at ht.

So far, we have shown that the strategy profile induced by (ŝ∗i , ŝ
∗∗
j ) is a subgame-perfect equilibrium

of the subgame starting at any non-terminal history ht that continues after an arbitrary choice of Ci ≥ 0.

In other words, the strategy profile induced by (ŝ∗i , ŝ
∗∗
j ) is a subgame-perfect equilibrium of any subgame

starting in period 1. We note that, in the equilibrium of each subgame starting in period 1, agent j’s

payoff must be non-negative because agent j can secure a payoff of zero in the subgame by choosing to

contribute nothing in the subgame.

We are left to show that ŝ∗i (h
0) = K − Vj is agent i’s optimal choice in period 0. In doing so, we

may assume that, in every subgame starting in period 1, agents i and j choose the strategy profile

induced by (ŝ∗i , ŝ
∗∗
j ).

Suppose that i = 1, i.e., it is agent 1 that has an option to make a proposal C1 ≥ 0. When

C1 = K − V2, we have K̄ = K − C1 = V2, and V̄1 = V1 − C1 < V2 by our assumption V1 < K. In the

4When V̄i ≤ 0, Items (ii), (iv), (vi), and (vii) in the descriptions of ŝ∗i never apply because the inequalities
in the descriptions do not hold.
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subgame (V̄1, V2, K̄) starting in period 1, the strategy profile induced by (ŝ∗1, ŝ
∗∗
2 ) realizes a path such

that c11 = 0 and c22 = K̄ with the period of completion T = 2, and agent 1’s payoff along the path is

δV̄1 = δ(V1 +V2 −K) > 0. We investigate whether agent 1 can get a payoff higher than δ(V1 +V2 −K)

by choosing C1 ̸= K − V2. In the subgame starting in period 1 after the choice of C1, agent 2’s payoff

is non-negative as we have mentioned above. By Lemma 1, agent 1’s payoff realized in the subgame

does not exceed δT−1(V1 + V2 − K). If T ≥ 2 by the choice of C1, agent 1’s payoff does not exceed

δ(V1 + V2 −K) since δ < 1. Since agent 2 does not have an opportunity to contribute before period 2,

if T = 1 by the choice of C1, then it must be the case that agent 1 bears all the cost of the project,

which makes agent 1’s payoff negative since V1 < K. Therefore, agent 1’s payoff cannot get higher than

δ(V1 + V2 −K) even if he chooses any C1 ̸= K − V2. So, ŝ
∗
1(h

0) = K − V2 is agent 1’s optimal choice.

Suppose that i = 2, i.e., it is agent 2 that has an option to make a proposal C2 ≥ 0. When

C2 = K − V1, we have K̄ = K − C2 = V1, and V̄2 = V2 − C2 < V1 by our assumption V2 < K.

In the subgame (V1, V̄2, K̄) starting in period 1, the strategy profile induced by (ŝ∗∗1 , ŝ∗2) realizes a

path such that c11 = K̄ with the period of completion T = 1, and agent 2’s payoff along the path is

V̄2 = V1 + V2 −K > 0. We investigate whether agent 2 can get a payoff higher than V1 + V2 −K by

choosing C2 ̸= K − V1. In the subgame starting in period 1 after the choice of C2, agent 1’s payoff is

non-negative as we have mentioned above. By Lemma 1, agent 2’s payoff realized in the subgame does

not exceed V1 + V2 −K since δ < 1. Therefore, agent 2’s payoff cannot get higher than V1 + V2 −K

even if he chooses any C2 ̸= K − V1. So, ŝ
∗
2(h

0) = K − V1 is agent 2’s optimal choice.

In this section, we have considered the game where only one agent has an option to make a proposal

to commit to the final step. We point out two properties of the equilibria of the game.

First, the project is completed in equilibrium as long as completion of the project is socially de-

sirable: K < V1 + V2. This is in contrast with the fact that the project is not completed when

Vi < Vj < δVi + Vj < K < V1 + V2 in equilibrium of the game with the restrictions C1 = C2 = 0 in the

previous section.

Second, the agent with the option gets all the surplus while the other agent without the option

gets a payoff of zero. The option gives an advantage to the proposer because he comes to be able

to manipulate his net valuation and make it lower than his opponent’s valuation. The option also

gives him a chance to postpone his actual payment, which is another advantage to him. Although a

commitment to the final step seems a generous proposal at a glance, the commitment gives the proposer

a great advantage in his equilibrium payoff.
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5. The Results for the Two-Side Case

This section studies our model with the restriction in which both agents can make a proposal. The

admissible strategies for agents 1 and 2 are such that C1 ≥ 0 and C2 ≥ 0. Define

V̂ =
1

1 + δ
(V1 + V2 −K)

for notational convenience. We have 0 < V̂ < Vi by our assumption 0 < Vi < K < V1 + V2 for i = 1, 2.

Proposition 4. If there is any subgame-perfect equilibrium (s∗1, s
∗
2) in the game with the restrictions

C1 ≥ 0 and C2 ≥ 0, the equilibrium payoff profile (U∗
1 , U

∗
2 ) ≡ (u1(s

∗
1, s

∗
2), u2(s

∗
1, s

∗
2)) is such that

(U∗
1 , U

∗
2 ) = (δV̂ , V̂ ), which is realized along the equilibrium path, C1 = V1 − V̂ , C2 = V2 − V̂ , and

c11 = K − C1 − C2 = (1− δ)V̂ , with the period of completion T = 1.

Proof. The proposition is proved in four steps. Recall that we use the following notations: V̄1 =

V1 − C1, V̄2 = V2 − C2, and K̄ = K − C1 − C2.

Step 1. U∗
1 ≥ δV̂ .

Proof of Step 1. We show that, for any value of V̄2, agent 1 can secure a payoff of δV̂ by choosing

C1 = V1 − V̂ , which means that when agent 1 optimally chooses C1 in the equilibrium (s∗1, s
∗
2), his

payoff U∗
1 must be no less than δV̂ . We assume that the equilibrium payoff profile induced by (s∗1, s

∗
2)

is realized in the subgame (V̄1, V̄2, K̄) starting in period 1. Note that V̄1 = V̂ for the choice of C1.

If V̄2 > V̂ , we have (1 − δ)V̄1 < K̄ < V̄2. This is because K̄ = K − (V1 − V̄1) − (V2 − V̄2) >

K − (V1 − V̂ ) − (V2 − V̂ ) = (1 − δ)V̂ = (1 − δ)V̄1 and V̄2 − K̄ = V1 + V2 − K − V̂ = δV̂ > 0. Since

0 < V̄1 < V̄2 and K̄ > 0, the facts discussed in Section 3 apply to the subgame (V̄1, V̄2, K̄) starting in

period 1. By Fact 5, c11 = 0 and c22 = K̄ with the period of completion T = 2 in equilibrium of the

subgame, and hence agent 1’s equilibrium payoff in the subgame is δV̄1 = δV̂ .

If V̄2 ≤ V̂ , we have K̄ ≤ (1−δ)V̄1. If K̄ > 0, agent 1’s equilibrium payoff in the subgame (V̄1, V̄2, K̄)

is no less than δV̂ because agent 1 has an option to choose c11 = K̄, finish the game in T = 1, and

obtain a payoff V̄1 − K̄ ≥ V̄1 − (1 − δ)V̄1 = δV̄1 = δV̂ . If K̄ ≤ 0, it is optimal for agent 1 to choose

c11 = 0, finish the game in T = 1, and obtain a payoff V̄1 > δV̂ in the subgame.

Step 2. U∗
2 ≥ V̂ .

Proof of Step 2. Suppose that C1 is agent 1’s choice in the equilibrium (s∗1, s
∗
2). We assume that,

in every subgame starting in period 1, the equilibrium payoff profile induced by (s∗1, s
∗
2) is realized.
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When V̄1 > V̂ , consider agent 2’s choice C′
2 = V2−V̂ . Let V̄ ′

2 = V2−C′
2 and K̄′ = K−C1−C′

2. Note

that V̄ ′
2 = V̂ for the choice of C′

2. We have (1−δ)V̄ ′
2 < K̄′ < V̄1 because K̄′ = K−(V1−V̄1)−(V2−V̂ ) >

K − (V1 − V̂ ) − (V2 − V̂ ) = (1 − δ)V̂ = (1 − δ)V̄ ′
2 and V̄1 − K̄′ = V1 + V2 −K − V̂ = δV̂ > 0. Since

0 < V̄ ′
2 < V̄1 and K̄′ > 0, the facts discussed in Section 3 apply to the subgame (V̄1, V̄

′
2 , K̄

′) starting in

period 1. By Fact 4, c11 = K̄′ with the period of completion T = 1 in equilibrium of the subgame, and

hence agent 2’s equilibrium payoff in the subgame is V̄ ′
2 = V̂ . Since agent 2 can secure a payoff of V̂ by

the choice of C′
2, when agent 2 optimally chooses C2 in the equilibrium (s∗1, s

∗
2), we must have U∗

2 ≥ V̂ .

When V̄1 ≤ V̂ , consider agent 2’s choice C′
2 = V2 − V̂ + ε where 0 < ε < V̂ . Let V̄ ′

2 = V2 − C′
2

and K̄′ = K − C1 − C′
2. Note that V̄ ′

2 = V̂ − ε > 0. We have K̄′ < (1 − δ)V̄1 because K̄′ =

K − (V1 − V̄1) − (V2 − V̂ + ε) = V̄1 − δV̂ − ε < V̄1 − δV̄1 = (1 − δ)V̄1. If K̄′ > 0, we have V̄1 > 0

and Fact 3 applies to the subgame (V̄1, V̄
′
2 , K̄

′) starting in period 1. So, we have c11 = K̄′ with the

period of completion T = 1 in equilibrium of the subgame, and hence agent 2’s equilibrium payoff in

the subgame is V̄ ′
2 = V̂ − ε. If K̄′ ≤ 0, then it is optimal for agent 1 to choose c11 = 0 and finish the

game in T = 1. So, agent 2’s equilibrium payoff in the subgame is V̄ ′
2 = V̂ − ε. When we consider

agent 2’s equilibrium payoff U∗
2 in the whole game, we must have U∗

2 ≥ V̂ − ε since agent 2 has an

option to choose C′
2 = V2 − V̂ + ε. Since we can have ε > 0 arbitrarily close to 0, it must be the case

that U∗
2 ≥ V̂ .

Step 3. In equilibrium, T = 1, U∗
1 = δV̂ , U∗

2 = V̂ , and C2 = V2 − V̂ .

Proof of Step 3. Steps 1 and 2 imply that U∗
1 + U∗

2 ≥ (1 + δ)V̂ = V1 + V2 − K while Lemma 1

implies that U∗
1 + U∗

2 ≤ δT−1(V1 + V2 − K). Since δ < 1, we must have T = 1 in equilibrium and

U∗
1 + U∗

2 = V1 + V2 −K. By Steps 1 and 2, we obtain U∗
1 = δV̂ and U∗

2 = V̂ .

Since T = 1 in equilibrium, the result U∗
2 = V̂ implies that C2 = V2 − V̂ in equilibrium.

Step 4. In equilibrium, C1 = V1 − V̂ and c11 = (1− δ)V̂ .

Proof of Step 4. Suppose that C1 is agent 1’s choice in equilibrium. Let V̄1 = V1 − C1. By Step 3,

we have T = 1 and U∗
1 = δV̂ in equilibrium. By the form of agent 1’s payoff function, we have

U∗
1 = V̄1 − c11 = δV̂ . Considering c11 ≥ 0, we have V̄1 ≥ δV̂ . We will show V̄1 = V̂ in equilibrium.

First, suppose, by way of contradiction, that V̄1 < V̂ in equilibrium. Choose sufficiently small ε > 0

so that ε < δ(V̂ − V̄1) and ε < V2 − V̂ . Let C′
2 = V2 − V̂ − ε, V̄ ′

2 = V2 − C′
2, and K̄′ = K − C1 − C′

2.

Then, we have V̄ ′
2 = V̂ + ε and K̄′ = K − (V1 − V̄1) − (V2 − V̂ − ε) = V̄1 − δV̂ + ε ≥ ε. If agent 2

chooses C ′
2 in period 0, then he enters the subgame (V̄1, V̄

′
2 , K̄

′) starting in period 1, to which the facts

discussed in Section 3 apply because 0 < V̄1 < V̄ ′
2 and K̄′ > 0. We note that K̄′ < (1 − δ)V̄1 since
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(1− δ)V̄1 − K̄′ = δ(V̂ − V̄1)− ε > 0. By Fact 3, we have c11 = K̄′ with the period of completion T = 1

in equilibrium of the subgame (V̄1, V̄
′
2 , K̄

′), in which agent 2’s equilibrium payoff is V̄ ′
2 = V̂ + ε > V̂ .

This is in contradiction with the result U∗
2 = V̂ in Step 3.

Second, suppose, by way of contradiction, that V̄1 > V̂ in equilibrium. Choose sufficiently small

ε > 0 so that ε < δV̂ , ε < V̄1 − V̂ , and ε < V̄2 − V̂ . Let C′
2 = V2 − V̂ − ε, V̄ ′

2 = V2 − C′
2, and

K̄′ = K−C1−C′
2. Then, we have V̄ ′

2 = V̂ +ε and K̄′ = V̄1− δV̂ +ε > (1− δ)V̂ +ε. Note that V̄1 > V̄ ′
2

since V̄1−V̄ ′
2 = V̄1−V̂ −ε > 0. If agent 2 chooses C′

2 in period 0, then he enters the subgame (V̄1, V̄
′
2 , K̄

′)

starting in period 1, to which the facts discussed in Section 3 apply because 0 < V̄ ′
2 < V̄1 and K̄′ > 0.

We note that (1 − δ)V̄ ′
2 < K̄′ < V̄1 since K̄′ − (1 − δ)V̄ ′

2 > (1 − δ)V̂ + ε − (1 − δ)(V̂ + ε) = δε > 0

and V̄1 − K̄′ = δV̂ − ε > 0. By Fact 4, we have c11 = K̄′ with the period of completion T = 1 in

equilibrium of the subgame (V̄1, V̄
′
2 , K̄

′), in which agent 2’s equilibrium payoff is V̄ ′
2 = V̂ + ε > V̂ . This

is in contradiction with the result U∗
2 = V̂ in Step 3.

Therefore, we have V̄1 = V̂ in equilibrium, which implies that C1 = V1 − V̂ . Furthermore, in

equilibrium, we have c11 = (1− δ)V̂ since U∗
1 = V̄1 − c11 = δV̂ .

Proposition 4 assumes the existence of a subgame-perfect equilibrium (s∗1, s
∗
2). We next show that

the following strategy profile (s̃∗i , s̃
∗∗
j ) is in fact a subgame-perfect equilibrium of the game.

Suppose that, for t ≥ 1, we have a non-terminal history ht = {(C1, C2), (c
0
1, c

0
2), . . . , (c

t−1
1 , ct−1

2 )}

with the restrictions C1 ≥ 0 and C2 ≥ 0. We use the following notations: V̄1 = V1 −C1, V̄2 = V2 −C2,

and V̂ = (V1 + V2 −K)/(1 + δ).

Strategy s̃∗
i for agent i in the game with the restrictions C1 ≥ 0 and C2 ≥ 0.

Let s̃∗i (h
0) = Vi− V̂ . When i ̸= m(t), we require that s̃∗i (h

t) = 0 by the feasibility for contributions.

When i = m(t), the following descriptions define s̃∗i (h
t).

(i) If xt−1 ≤ 0, then let s̃∗i (h
t) = 0.

(ii) If V̄i ≤ V̄j and 0 < xt−1 ≤ (1− δ)V̄i, then let s̃∗i (h
t) = xt−1.

(iii) If V̄i ≤ V̄j and (1− δ)V̄i < xt−1 ≤ V̄j , then let s̃∗i (h
t) = 0.

(iv) If V̄i ≤ V̄j and V̄j < xt−1 ≤ δV̄i + V̄j , then let s̃∗i (h
t) = xt−1 − V̄j .

(v) If V̄i ≤ V̄j and δV̄i + V̄j < xt−1, then let s̃∗i (h
t) = 0.

(vi) If V̄j < V̄i and 0 < xt−1 ≤ V̄i, then let s̃∗i (h
t) = xt−1.

(vii) If V̄j < V̄i and V̄i < xt−1, then let s̃∗i (h
t) = 0.
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Strategy s̃∗∗
j for agent j in the game with the restrictions C1 ≥ 0 and C2 ≥ 0.

Let s̃∗∗j (h0) = Vj − V̂ . When j ̸= m(t), we require that s̃∗∗j (ht) = 0 by the feasibility for contribu-

tions. When j = m(t), the following descriptions define s̃∗∗j (ht).

(i) If xt−1 ≤ 0, then let s̃∗∗j (ht) = 0.

(ii) If V̄j < V̄i and 0 < xt−1 ≤ (1− δ)V̄j , then let s̃∗∗j (ht) = xt−1.

(iii) If V̄j < V̄i and (1− δ)V̄j < xt−1 ≤ V̄i, then let s̃∗∗j (ht) = 0.

(iv) If V̄j < V̄i and V̄i < xt−1 ≤ δV̄j + V̄i, then let s̃∗∗j (ht) = xt−1 − V̄i.

(v) If V̄j < V̄i and δV̄j + V̄i < xt−1, then let s̃∗∗j (ht) = 0.

(vi) If V̄i ≤ V̄j and 0 < xt−1 ≤ V̄j , then let s̃∗∗j (ht) = xt−1.

(vii) If V̄i ≤ V̄j and V̄j < xt−1, then let s̃∗∗j (ht) = 0.

Proposition 5. The strategy profile (s̃∗i , s̃
∗∗
j ) is a subgame-perfect equilibrium of the game with the

restrictions C1 ≥ 0 and C2 ≥ 0.

Proof. Take any C1 ≥ 0 and C2 ≥ 0. We use the following notations: V̄1 = V1 −C1, V̄2 = V2 −C2,

and K̄ = K − C1 − C2. We consider the subgame (V̄1, V̄2, K̄) starting in period 1.

Let us compare the strategy profile (ŝ∗i , ŝ
∗∗
j ) presented in Section 4 with the strategy profile (s̃∗i , s̃

∗∗
j )

in this section. We note that the descriptions in Items (i) through (vii) are almost the same between

(ŝ∗i , ŝ
∗∗
j ) and (s̃∗i , s̃

∗∗
j ) except for the point that Vj appears in (ŝ∗i , ŝ

∗∗
j ) while V̄j appears in (s̃∗i , s̃

∗∗
j ).

Although Vj is a positive number by the assumption of our model, V̄j can be a non-positive number.

We here recall that Proposition 3 in Section 4 implies that the strategy profile induced by (ŝ∗i , ŝ
∗∗
j ) is

a subgame-perfect equilibrium of any subgame (V̄i, Vj , K̄) investigated in the previous section. So, if

either V̄1 > 0 or V̄2 > 0 or both, then we can use the arguments in the proof of Proposition 3 and

show that the strategy profile induced by (s̃∗i , s̃
∗∗
j ) is a subgame-perfect equilibrium of the subgame

(V̄1, V̄2, K̄) investigated in this section. We do not repeat the arguments for the case: either V̄1 > 0 or

V̄2 > 0 or both.

However, in this section, it is possible that V̄1 ≤ 0 and V̄2 ≤ 0. In this case, we must have K̄ < 0

since K̄ = K−C1 −C2 = K− (V1 − V̄1)− (V2 − V̄2) ≤ K−V1 −V2 < 0, where the last inequality holds

by our assumption that completion of the project is socially desirable. When K̄ < 0, the project is

completed in period 1 and the game ends. It is optimal for agent 1 to choose c11 = 0 because choosing

c11 > 0 simply lowers his payoff, considering that the project is completed and the game ends even if he
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contributes nothing in period 1. This optimal choice for agent 1 is described in Item (i) of the strategy

s̃∗1 or s̃∗∗1 . So, the strategy profile induced by (s̃∗i , s̃
∗∗
j ) is a subgame-perfect equilibrium of the subgame

(V̄1, V̄2, K̄) also in this case: V̄1 ≤ 0 and V̄2 ≤ 0.

So far, we have shown that the strategy profile induced by (s̃∗i , s̃
∗∗
j ) is a subgame-perfect equilibrium

of the subgame (V̄1, V̄2, K̄) that continues after arbitrary choices of C1 ≥ 0 and C2 ≥ 0. We are left

to show that s̃∗i (h
0) = Vi − V̂ and s̃∗∗j (h0) = Vj − V̂ are the optimal choices for agents i and j in

period 0. When C1 = V1− V̂ and C2 = V2− V̂ , we have V̄1 = V̄2 = V̂ > K̄ = (1− δ)V̂ . In the subgame

(V̄1, V̄2, K̄) starting in period 1, the strategy profile induced by (s̃∗1, s̃
∗∗
2 ) as well as (s̃∗∗1 , s̃∗2) realizes a

path such that c11 = K̄ with the period of completion T = 1, and agent 1’s payoff along the path is

V̄1 − K̄ = δV̂ while agent 2’s payoff along the path is V̄2 = V̂ . We investigate whether agent 1 or 2 can

get a higher payoff if he unilaterally changes the choice of C1 or C2. In doing so, we may assume that,

in every subgame starting in period 1, agents i and j choose the strategy profile induced by (s̃∗i , s̃
∗∗
j ).

First, we investigate agent 1’s deviation. Suppose that C2 = V2 − V̂ is given. If agent 1 chooses C1

such that 0 ≤ C1 < V1− V̂ , then Item (vi) of the strategy s̃∗1 or s̃∗∗1 applies to agent 1 at the history h1,

with c11 = K̄ chosen, and the game ends in period 1; his payoff is V̄1− K̄ = (V1−C1)− (K−C1−C2) =

V1 − K + V2 − V̂ = (1 + δ)V̂ − V̂ = δV̂ . If agent 1 chooses C1 such that V1 − V̂ < C1 < V1 − δV̂ ,

then Item (ii) of the strategy s̃∗1 or s̃∗∗1 applies to agent 1 at the history h1, with c11 = K̄ chosen, and

the game ends in period 1; his payoff is V̄1 − K̄ = δV̂ . If agent 1 chooses C1 such that V1 − δV̂ ≤ C1,

then Item (i) of the strategy s̃∗1 or s̃∗∗1 applies to agent 1 at the history h1, with c11 = 0 chosen, and

the game ends in period 1; his payoff V̄1 = V1 −C1 does not exceed δV̂ . So, agent 1’s payoff cannot be

higher than δV̂ even if he chooses C1 ≥ 0 such that C1 ̸= V1 − V̂ .

Second, we investigate agent 2’s deviation. Suppose that C1 = V1 − V̂ is given. If agent 2 chooses

C2 such that 0 ≤ C2 < V2 − V̂ , then Item (iii) of the strategy s̃∗1 or s̃∗∗1 applies to agent 1 at the

history h1, with c11 = 0 chosen, and Item (vi) of the strategy s̃∗∗2 or s̃∗2 applies to agent 2 at the

history h2, with c22 = K̄ chosen, and the game ends in period 2; agent 2’s payoff is δ(V̄2 − K̄) =

δ((V2−C2)−(K−C1−C2)) = δ(V2−K+V1− V̂ ) = δ((1+δ)V̂ − V̂ ) = δ2V̂ . If agent 2 chooses C2 such

that V2 − V̂ < C2 < V2 − δV̂ , then Item (vi) of the strategy s̃∗1 or s̃∗∗1 applies to agent 1 at the history

h1, with c11 = K̄ chosen, and the game ends in period 1; agent 2’s payoff V̄2 = V2 − C2 is less than V̂ .

If agent 2 chooses C2 such that V2 − δV̂ ≤ C2, then Item (i) of the strategy s̃∗1 or s̃∗∗1 applies to agent 1

at the history h1, with c11 = 0 chosen, and the game ends in period 1; agent 2’s payoff V̄2 = V2 − C2

does not exceed δV̂ . So, agent 2’s payoff cannot be higher than V̂ even if he chooses C2 ≥ 0 such that

C2 ̸= V2 − V̂ .
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In this section, we have considered the game where both agents have options to make a proposal

to commit to the final step. We point out three properties of the equilibria of this game.

First, the project is completed in equilibrium as long as completion of the project is socially desir-

able: K < V1 + V2. This property is also held by the equilibria of the game where only one agent can

make a proposal.

Second, both agents get positive payoffs. We can say that the surplus is split relatively fairly

between the two agents in equilibrium of this game, compared to the game where only one agent or no

agent can propose.

Third, the second mover has an advantage. That is, agent 1 obtains a payoff of δV̂ while agent 2

obtains a payoff of V̂ in equilibrium. As the agents become more patient, i.e., as δ gets close to 1, the

second mover’s advantage becomes less.

6. Conclusion

We have investigated a two-player contribution game similar to the one studied by Compte and Je-

hiel [2003] but different in that our game assumes that agents can commit to make a certain amount

of payment at the final step of completing a joint project. We have analyzed how such commitments

to the final step can affect the equilibrium payoff profile in the game. We have shown the following.

In equilibrium of the game studied by Compte and Jehiel [2003], the agent with the lower valuation

of the project gets all the surplus generated by completion of the project while the agent with the

higher valuation gets a payoff of zero.

However, in equilibrium of our game where only one agent has an option to propose, the proposer

gets all the surplus while the other agent without the option gets a payoff of zero. The option gives

an advantage to the proposer because he comes to be able to manipulate his net valuation and make

it lower than his opponent’s valuation. The option also gives him such a chance to postpone his actual

payment, as is another advantage to him.

In equilibrium of our game where both agents can propose, the surplus is split relatively fairly

between the two in the sense that the both agents get positive payoffs, although the second mover’s

payoff exceeds that of the first mover.
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Joint Projects with Commitments to the Final Step
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