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Random paths to stability in three-sided

matching with cyclic preferences
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Abstract

We investigate the three-sided matching model with cyclic preferences: there are three equinumerous disjoint

sets of agents, N1, N2, and N3, and each agent a ∈ Nn has a strict preference relation over Nn+1 ∪ {a} with

himself ranked last on his preference list. We show that, starting from an arbitrary unstable matching, there

exists a finite sequence of successive blockings leading to a stable matching for a three-sided matching problem

with cyclic preferences. The result implies that a decentralized process of successive blockings by randomly

chosen blocking agents will converge to a stable matching with probability one. When |Nn| ≤ 5, the result

applies for any problem. When |Nn| = 6, the result applies for any problem for which there exists a stable

matching.

1. Introduction

The three-sided matching model with cyclic preferences, or equivalently the three-sided cyclic matching

model, is described as follows. There are three disjoint sets of agents: N1, N2, and N3 with |N1| =

|N2| = |N3|. The set of all agents is denoted by N ≡ N1∪N2∪N3. The word cyclic is used because the

way how agents have preference relations exhibits a cycle: each agent a ∈ Nn has a strict preference

relation over Nn+1 ∪ {a} where Nn+1 is interpreted as N1 when n = 3. A matching is a bijection

µ : N → N such that, for any a ∈ Nn, we have µ(a) ∈ Nn+1 ∪ {a} and µ(µ(µ(a))) = a. If µ(a) ̸= a,

agent a is matched at the matching µ. If µ(a) = a, agent a is single at the matching µ.

The major difference between the three-sided cyclic matching model and the three-sided matching

model as described in Alkan [1988] and in Danilov [2003] is the way how agents have preference relations.
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In the latter three-sided matching model, each agent a ∈ Nn has a strict preference relation over

Nn+1 ×Nn+2 ∪ {a}. So, each agent cares both of his partners in the three-sided matching model while

each agent cares only one of his partners in the three-sided cyclic matching model.

Both of the models described above are extensions of the two-sided matching model analyzed by

Gale and Shapley [1962]. In the two-sided matching model, there are two kinds of agents, men and

women. The sets of men and women are denoted by M and W , respectively. Each agent has a strict

preference relation over agents of the opposite sex. A matching is a bijection µ : M ∪ W → M ∪ W

such that, for any a ∈ M , we have µ(a) ∈ W ∪ {a} and µ(µ(a)) = a, and for any a ∈ W , we have

µ(a) ∈ M ∪ {a} and µ(µ(a)) = a. So, the two-sided matching model can be regarded as the two-sided

cyclic matching model.

Stability has been a key research topic in the field of matching theory. In the two-sided matching

model, a matching µ is blocked by a single agent if he prefers being single to being matched to his

partner at µ. A matching µ is also blocked by a pair of a man and a woman (m,w) ∈ M ×W if they

prefer each other to their own partners at µ. A matching µ is stable if it is not blocked by any single

agent or any pair of agents. Gale and Shapley [1962] proved the existence of a stable matching for any

two-sided matching problem by presenting an algorithm for finding a stable matching.

As for the three-sided matching model in general, a stable matching does not necessarily exist as

Alkan [1988] presented an example. However, if we restrict preference domains of agents in a certain

way, there is a possibility that there exists a stable matching for a three-sided matching problem as

Danilov [2003] showed. He considered the following restrictions on preference domains. Each agent in

N1 is more interested in agents in N2 than in agents in N3 while each agent in N2 is more interested in

agents in N1 than in agents in N3. Danilov [2003] presented an algorithm for finding a stable matching

for any three-sided matching problem with these restricted preference domains.

Stability has been studied also in the three-sided cyclic matching model. As Biro and McDer-

mid [2010] showed an example with |Nn| = 6, a stable matching does not necessarily exist in the

three-sided cyclic matching model if there exist some agents who do not rank themselves last on their

preference lists, that is, if there exist agents in Nn such that each of them prefers being single to being

matched to an unacceptable agent in Nn+1.

On the other hand, some researchers have studied stability in the three-sided cyclic matching model,

focusing on the case where each agent ranks himself last on his preference list. Boros et al. [2004]

proved the existence of a stable matching for the case |Nn| ≤ 3. Eriksson et al. [2006] proved the

existence for the case |Nn| = 4. Furthermore, based on computer search, Eriksson et al. [2006] stated
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a conjecture that there were at least two stable matchings for any three-sided cyclic matching problem

when |Nn| ≥ 2. Woeginger [2013] stated that proving the existence of a stable matching for any three-

sided cyclic matching problem was an open problem. Pashkovich and Poirrier [2018] demonstrated that

at least two distinct stable matchings exist for the case |Nn| = 5. So, the conjecture made by Eriksson

et al. [2006] seemed promising. However, Lam and Plaxton [2019] showed that, by utilizing the example

with |Nn| = 6 presented by Biro and McDermid [2010], a stable matching does not necessarily exist in

the three-sided cyclic matching model even if each agent ranks himself last on his preference list. Their

result indicates that a stable matching does not exist for some three-sided cyclic matching problems

when |Nn| ≥ 6.

Another key research topic in the field of matching theory is an investigation of random paths to

a stable matching. The question here is whether decentralized decision making by each agent leads

to stability. This question was answered by Roth and Vande Vate [1990] for the two-sided matching

model. They proved that, starting from an arbitrary unstable matching, there exists a finite sequence

of successive blockings leading to a stable matching. Their result implies that a decentralized process

of successive blockings by randomly chosen blocking agents will converge to a stable matching with

probability one. The same question was answered by Samejima [2018] for the three-sided matching

model with the restricted preference domains considered by Danilov [2003].

In the present paper, we investigate random paths to a stable matching in the three-sided cyclic

matching model for the case where each agent ranks himself last on his preference list. However, as we

have noted, the existence of a stable matching for the case |Nn| ≥ 6 is not guaranteed; a problem may or

may not have a stable matching, depending on the preference relations that agents have. So, we focus

on a three-sided cyclic matching problem such that, given the preferences of agents, a stable matching

exists for the problem itself and for any problem constructed of a subset of the set of all agents. We

investigate paths to stability for such a problem. We prove that, starting from an arbitrary unstable

matching, there exists a finite sequence of successive blockings leading to a stable matching. Our result

implies the following. When |Nn| ≤ 5, a decentralized process of successive blockings by randomly

chosen blocking agents will converge to a stable matching with probability one for any problem. When

|Nn| = 6, such successive random blockings will lead to stability for any problem for which there exists

a stable matching.

The remaining part of this paper is organized as follows. Section 2 explains a model of three-sided

cyclic matching model. Section 3 shows our main result. Section 4 provides some concluding remarks.
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2. Preliminaries

There are three disjoint sets of agents: N1, N2, and N3. For each agent a ∈ Nn with n ∈ {1, 2, 3}, Nn

represents agent a’s gender. We assume that |N1| = |N2| = |N3|. So, each of these sets contains the

same number of agents. We denote each of these sets by Nn with n = 1, 2, or 3. When n = 2, Nn+2 is

interpreted as N1. When n = 3, Nn+1 and Nn+2 are interpreted as N1 and N2, respectively. The set

of all agents is denoted by N ≡ N1 ∪N2 ∪N3.

For any n ∈ {1, 2, 3}, each agent a ∈ Nn has a complete, transitive, and strict preference relation

�a over Nn+1 ∪ {a}. When a prefers b ∈ Nn+1 ∪ {a} to b′ ∈ Nn+1 ∪ {a}, we write b ≻a b′. When a

weakly prefers b to b′, that is, b is at least as good as b′ for a, we write b �a b′. We assume that each

agent ranks himself last on his preference list. That is, for any n ∈ {1, 2, 3}, a ∈ Nn, and b ∈ Nn+1, we

have b ≻a a.

Definition. A matching is a bijection µ : N → N such that for any n ∈ {1, 2, 3} and a ∈ Nn, we

have

(i) µ(a) ∈ Nn+1 ∪ {a}, and

(ii) µ(µ(µ(a))) = a.

We say that a ∈ N is single at µ if µ(a) = a while a ∈ N is matched at µ if µ(a) ̸= a. The set

of single agents at µ is denoted by S(µ) ≡ {a ∈ N : µ(a) = a} while the set of matched agents at

µ is denoted by T (µ) ≡ {a ∈ N : µ(a) ̸= a}. We also say that a triplet (a, b, c) is matched at µ if

(a, b, c) ∈ Nn × Nn+1 × Nn+2 for some n ∈ {1, 2, 3} and we have µ(a) = b, µ(b) = c, and µ(c) = a.

When (a, b, c) is matched at µ, we write (a, b, c) ∈ µ by abuse of notation, and we say that b and c are

partners of a at µ. In this case, we also say that c and a are partners of b at µ as well as a and b are

partners of c at µ.

A three-sided matching problem with cyclic preferences, or equivalently a three-sided cyclic matching

problem, is specified by (N, (�a)a∈N ).

We now define stability of a matching. A triplet (a, b, c) is called a blocking triplet for µ if (a, b, c) ∈

Nn×Nn+1×Nn+2 for some n ∈ {1, 2, 3} and we have b ≻a µ(a), c ≻b µ(b), and a ≻c µ(c). A matching

µ is individually rational if µ(a) �a a for all a ∈ N .

Definition. A matching µ is stable if it is individually rational and there is no blocking triplet for

µ.

Since we assume that each agent ranks himself last on his preference list, any matching is individ-
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ually rational in the present paper. Furthermore, no agent is single at a stable matching due to our

assumption that |N1| = |N2| = |N3|. In other words, if some agents are single at a matching, then the

matching is unstable.

3. The Result

This section investigates whether, starting from an arbitrary unstable matching, there exists a finite

sequence of successive blockings leading to a stable matching on condition that there exists a stable

matching in the three-sided cyclic matching model.

Suppose that a triplet (a, b, c) is a blocking triplet for µ. We say that another matching µ′ is

obtained from µ by satisfying the blocking triplet (a, b, c) for µ if the following three conditions hold.

(i) We have (a, b, c) ∈ µ′.

(ii) For any i ∈ {a, b, c}, if µ(i) = j ̸= i or µ(j) = i ̸= j then µ′(j) = j.

(iii) If i /∈ {a, b, c, µ(a), µ(b), µ(c)} or µ(i) /∈ {a, b, c} then µ′(i) = µ(i).

Condition (i) says that the blocking triplet (a, b, c) for µ is newly matched at µ′. Condition (ii) says

that the partners of a, b, and c at µ become single at µ′. Condition (iii) says that agents irrelevant to

(a, b, c) at µ are unaffected even when µ′ is obtained from µ.

Theorem. Let µ1 be an arbitrary unstable matching for a three-sided cyclic matching problem,

which is specified by (N, (�a)a∈N ) with N ≡ N1 ∪N2 ∪N3 and |Nn| = |N |/3 for n ∈ {1, 2, 3}. Suppose

that for any N̄1 ⊂ N1, N̄2 ⊂ N2, and N̄3 ⊂ N3 with |N̄1| = |N̄2| = |N̄3|, there exists a stable matching

for the problem (N̄ , (�a)a∈N̄ ) with N̄ ≡ N̄1 ∪ N̄2 ∪ N̄3.
1 Then, there exists a finite sequence µ1, . . . , µL

of matchings for the problem (N, (�a)a∈N ) such that µL is stable, and for each ℓ = 1, . . . , L− 1, there

is a blocking triplet for µℓ such that µℓ+1 is obtained from µℓ by satisfying the blocking triplet.

Proof. At the beginning, we have an unstable matching µ1.

Step 1. Suppose that S(µ1) = N . That is, all agents are single at µ1. If this is not the case, then

we proceed to step 2. Otherwise, we go through the following procedure.

Let µ∗ be a stable matching for the problem (N, (�a)a∈N ) and let {(aℓ, bℓ, cℓ)}|N|/3
ℓ=1 be the collection

of triplets that are matched at µ∗, i.e., (aℓ, bℓ, cℓ) ∈ µ∗ for ℓ = 1, . . . , |N |/3. We now obtain a sequence

of matchings µ1, . . . , µ|N/3|+1 = µ∗ such that for each ℓ = 1, . . . , |N |/3, we obtain µℓ+1 from µℓ by

1When we consider the problem (N̄, (�a)a∈N̄ ), we must note that the preference relation of agent a ∈ N̄n,
�a, is defined over not N̄n+1∪{a} but Nn+1∪{a}. However, we use �a for the specification of the problem since
the preference relation over N̄n+1 ∪ {a} can be directly induced from the preference relation over Nn+1 ∪ {a}.
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satisfying the blocking triplet (aℓ, bℓ, cℓ). We note that (aℓ, bℓ, cℓ) is in fact a blocking triplet for µℓ

since aℓ, bℓ, and cℓ are single at µℓ.

At the end of step 1, we obtain a stable matching in the sequence of matchings mentioned in the

theorem.

Step 2. Let µℓ be the unstable matching that we have at the beginning of this step. Let |T (µℓ)|

be the number of matched agents at µℓ. Note that, whenever step 2 is reached, |T (µℓ)| ≥ 3 and it is

clear that |T (µℓ)| is a multiple of three.

As we will see, we may return to step 2 after we go through subsequent steps such as steps 3, 4, 7,

and 8. So, we may be in a loop, but this loop is not infinite because every time we return to step 2,

the number of matched agents |T (µℓ)| ≥ 3 is smaller than before.

We now proceed to step 3.

Step 3. Suppose that there exists a blocking triplet (a, b, c) for µℓ such that a ∈ T (µℓ), b ∈ T (µℓ),

and c ∈ T (µℓ), that is, these three agents are not single at µℓ.
2 If there does not exist such a blocking

triplet, then we proceed to step 4. Otherwise, we go through the following procedure.

We now obtain another matching µℓ+1 by satisfying the blocking triplet (a, b, c) for µℓ. We note

that |T (µℓ+1)| = |T (µℓ)|− 6 since the partners of a, b, and c at µℓ become single at µℓ+1. We also note

that µℓ+1 is unstable since some agents are single at µℓ+1. We now return to step 2 with the unstable

matching µℓ+1 with the smaller number of matched agents |T (µℓ+1)| < |T (µℓ)|.

Step 4. Suppose that there exists a blocking triplet (a, b, c) for µℓ such that a ∈ S(µℓ), b ∈ T (µℓ),

and c ∈ T (µℓ), that is, one of these agents is single and the other two agents are not single at µℓ.
3 If

there does not exist such a blocking triplet, then we proceed to step 5. Otherwise, we go through the

following procedure.

We now obtain another matching µℓ+1 by satisfying the blocking triplet (a, b, c) for µℓ. We note

that |T (µℓ+1)| = |T (µℓ)| − 3 since the partners of b and c at µℓ become single at µℓ+1 and the formerly

single agent a gets matched at µℓ+1. We also note that µℓ+1 is unstable since some agents are single at

µℓ+1. We now return to step 2 with the unstable matching µℓ+1 with the smaller number of matched

agents |T (µℓ+1)| < |T (µℓ)|.
2We note that these three agents are not partners of each other at µℓ because, if so, they cannot form the

blocking triplet for µℓ since every agent in the blocking triplet should be matched to a more preferred agent
after blocking. Therefore, if there exists the blocking triplet for µℓ as described in step 3, it must be the case
that |T (µℓ)| ≥ 9.

3If there exists the blocking triplet for µℓ as described in step 4, it must be the case that |T (µℓ)| ≥ 6.
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Step 5. We first note that |S(µℓ)| is a multiple of three since both |N | and |T (µℓ)| are multiples

of three. We also note that, whenever step 5 is reached, |S(µℓ)| ≥ 3. This is because, if |S(µℓ)| = 0

at the beginning of step 5, the fact that we went through step 3 implies that there exists no blocking

triplet for µℓ, which is in contradiction with the instability of µℓ assumed at the beginning of step 2.

If |S(µℓ)| ≥ 6, then we proceed to step 6. If |S(µℓ)| = 3, then we go through the following procedure.

Let S(µℓ) be such that S(µℓ) = {a, b, c} for which (a, b, c) ∈ N1 ×N2 ×N3. We note that (a, b, c)

is in fact a blocking triplet for µℓ since a, b, and c are single at µℓ. We now obtain another matching

µℓ+1 by satisfying the blocking triplet (a, b, c) for µℓ.

We claim that µℓ+1 is a stable matching. Suppose, by way of contradiction, that there exists a

blocking triplet (a′, b′, c′) for µℓ+1. Since we went through steps 3 and 4 before reaching step 5, it

must be the case that one member of {a′, b′, c′} is in T (µℓ) and the other two members are in S(µℓ).

However, the two members in S(µℓ) are partners of each other at µℓ+1 and hence they cannot form

the blocking triplet for µℓ+1 since every agent in the blocking triplet should be matched to a more

preferred agent after blocking. A contradiction obtains.

At the end of step 5, we obtain a stable matching in the sequence of matchings mentioned in the

theorem.

Step 6. Suppose that there does not exist a blocking triplet (a, b, c) for µℓ such that a ∈ T (µℓ),

b ∈ S(µℓ), and c ∈ S(µℓ), that is, one of these agents is matched and the other two agents are single

at µℓ. If there exists such a blocking triplet, then we proceed to step 7. Otherwise, we go through the

following procedure.

Let µ̄∗ be a stable matching for the problem (S(µℓ), (�a)a∈S(µℓ)) and let {(ak, bk, ck)}|S(µℓ)|/3
k=1 be

the collection of triplets that are matched at µ̄∗, i.e., (ak, bk, ck) ∈ µ̄∗ for k = 1, . . . , |S(µℓ)|/3. We now

obtain a sequence of matchings µℓ, . . . , µℓ+|S(µℓ)|/3 for the problem (N, (�a)a∈N ) such that for each

k = 1, . . . , |S(µℓ)|/3, we obtain µℓ+k from µℓ+k−1 by satisfying the blocking triplet (ak, bk, ck). We

note that (ak, bk, ck) is in fact a blocking triplet for µℓ+k−1 since ak, bk, and ck are single at µℓ+k−1.

We claim that µℓ+|S(µℓ)|/3 is a stable matching. Suppose, by way of contradiction, that there

exists a blocking triplet (a′, b′, c′) for µℓ+|S(µℓ)|/3. Since we went through steps 3 and 4 before reaching

step 6, and since we did not proceed to step 7 at the beginning of step 6, it must be the case that all

members of {a′, b′, c′} are in S(µℓ). Then, (a′, b′, c′) must be a blocking triplet for µ̄∗ for the problem

(S(µℓ), (�a)a∈S(µℓ)), which is in contradiction with the stability of µ̄∗.

At the end of step 6, we obtain a stable matching in the sequence of matchings mentioned in the
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theorem.

Step 7. We note that, whenever step 7 is reached, |S(µℓ)| ≥ 6 since we went through step 5. We

also note that, since we went through step 6, there exists a blocking triplet (a, b, c) for µℓ such that

a ∈ T (µℓ), b ∈ S(µℓ), and c ∈ S(µℓ), that is, one of these agents is matched and the other two agents

are single at µℓ. We now investigate whether there exists another blocking triplet (d, e, f) for µℓ such

that d ∈ T (µℓ) \ {a, µℓ(a), µℓ(µℓ(a))}, e ∈ S(µℓ), and f ∈ S(µℓ). If there does not exist such a triplet

(d, e, f) described above, then we proceed to step 8. Otherwise, one of the following three cases must

apply. These three cases are mutually exclusive and collectively exhaustive.

Case 7–1. Agents a and d are in different genders.

Without loss of generality, we may assume that (a, b, c) = (a1, b1, c1) ∈ N1×N2×N3 and (e, f, d) =

(a2, b2, c2) ∈ N1×N2×N3. We note that a1 ̸= a2 and c1 ̸= c2. We consider the following two subcases.

Subcase 7–1–1. We have c2 ≻b1 c1.

We first obtain another matching µℓ+1 by satisfying the blocking triplet (a1, b1, c1) for µℓ. We note

that |T (µℓ+1)| = |T (µℓ)| since the partners of a1 at µℓ become single at µℓ+1 while the formerly single

agents b1 and c1 get matched at µℓ+1.

We claim that (a2, b1, c2) is a blocking triplet for µℓ+1. This is because a2 is single at µℓ+1 while

b1 and c2 prefer c2 and a2 to µℓ+1(b1) = c1 and µℓ+1(c2) = µℓ(c2), respectively. We next obtain

another matching µℓ+2 by satisfying the blocking triplet (a2, b1, c2) for µℓ+1. We note that |T (µℓ+2)| =

|T (µℓ+1)|−3 since a1, c1, and the partners of c2 at µℓ+1 become single at µℓ+2 while the formerly single

agent a2 gets matched at µℓ+2. We also note that µℓ+2 is unstable since some agents are single at µℓ+2.

We now return to step 2 with the unstable matching µℓ+2 with the smaller number of matched agents

|T (µℓ+2)| < |T (µℓ)|.

Subcase 7–1–2. We have c1 ≻b1 c2.

We note that (a2, b1, c2) is a blocking triplet for µℓ. This is because a2 and b1 are single at µℓ

while c2 prefers a2 to µℓ(c2). We first obtain another matching µℓ+1 by satisfying the blocking triplet

(a2, b1, c2) for µℓ. We note that |T (µℓ+1)| = |T (µℓ)| since the partners of c2 at µℓ become single at

µℓ+1 while the formerly single agents a2 and b1 get matched at µℓ+1.

We claim that (a1, b1, c1) is a blocking triplet for µℓ+1. This is because c1 is single at µℓ+1 while

a1 and b1 prefer b1 and c1 to µℓ+1(a1) = µℓ(a1) and µℓ+1(b1) = c2, respectively. We next obtain

another matching µℓ+2 by satisfying the blocking triplet (a1, b1, c1) for µℓ+1. We note that |T (µℓ+2)| =

|T (µℓ+1)| − 3 since a2, c2, and the partners of a1 at µℓ+1 become single at µℓ+2 while the formerly
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single agent c1 gets matched at µℓ+2. We also note that µℓ+2 is unstable since some agents are single at

µℓ+2. We now return to step 2 with the unstable matching µℓ+2 with the smaller number of matched

agents |T (µℓ+2)| < |T (µℓ)|.

Case 7–2. Agents a and d are in the same gender and b ̸= e.

Without loss of generality, we may assume that (a, b, c) = (a1, b1, c1) ∈ N1×N2×N3 and (d, e, f) =

(a2, b2, c2) ∈ N1×N2×N3. We note that a1 ̸= a2 and b1 ̸= b2. We consider the following two subcases.

Subcase 7–2–1. We have a2 ≻c1 a1.

We first obtain another matching µℓ+1 by satisfying the blocking triplet (a1, b1, c1) for µℓ. We note

that |T (µℓ+1)| = |T (µℓ)| since the partners of a1 at µℓ become single at µℓ+1 while the formerly single

agents b1 and c1 get matched at µℓ+1.

We claim that (a2, b2, c1) is a blocking triplet for µℓ+1. This is because b2 is single at µℓ+1 while

a2 and c1 prefer b2 and a2 to µℓ+1(a2) = µℓ(a2) and µℓ+1(c1) = a1, respectively. We next obtain

another matching µℓ+2 by satisfying the blocking triplet (a2, b2, c1) for µℓ+1. We note that |T (µℓ+2)| =

|T (µℓ+1)| − 3 since a1, b1, and the partners of a2 at µℓ+1 become single at µℓ+2 while the formerly

single agent b2 gets matched at µℓ+2. We also note that µℓ+2 is unstable since some agents are single at

µℓ+2. We now return to step 2 with the unstable matching µℓ+2 with the smaller number of matched

agents |T (µℓ+2)| < |T (µℓ)|.

Subcase 7–2–2. We have a1 ≻c1 a2.

We note that (a2, b2, c1) is a blocking triplet for µℓ. This is because b2 and c1 are single at µℓ

while a2 prefers b2 to µℓ(a2). We first obtain another matching µℓ+1 by satisfying the blocking triplet

(a2, b2, c1) for µℓ. We note that |T (µℓ+1)| = |T (µℓ)| since the partners of a2 at µℓ become single at

µℓ+1 while the formerly single agents b2 and c1 get matched at µℓ+1.

We claim that (a1, b1, c1) is a blocking triplet for µℓ+1. This is because b1 is single at µℓ+1 while

a1 and c1 prefer b1 and a1 to µℓ+1(a1) = µℓ(a1) and µℓ+1(c1) = a2, respectively. We next obtain

another matching µℓ+2 by satisfying the blocking triplet (a1, b1, c1) for µℓ+1. We note that |T (µℓ+2)| =

|T (µℓ+1)| − 3 since a2, b2, and the partners of a1 at µℓ+1 become single at µℓ+2 while the formerly

single agent b1 gets matched at µℓ+2. We also note that µℓ+2 is unstable since some agents are single at

µℓ+2. We now return to step 2 with the unstable matching µℓ+2 with the smaller number of matched

agents |T (µℓ+2)| < |T (µℓ)|.

Case 7–3. Agents a and d are in the same gender and b = e.

Without loss of generality, we may assume that (a, b, c) = (a1, b1, c1) ∈ N1×N2×N3 and (d, e, f) =

(a2, b1, c2) ∈ N1 ×N2 ×N3. We note that a1 ̸= a2. Since we went through step 5, we have |S(µℓ)| ≥ 6
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and hence there exists c3 ∈ N3 ∩ S(µℓ) such that c3 ̸= c1.
4 We consider the following two subcases.

Subcase 7–3–1. We have c3 ≻b1 c1.

We first obtain another matching µℓ+1 by satisfying the blocking triplet (a1, b1, c1) for µℓ. We note

that |T (µℓ+1)| = |T (µℓ)| since the partners of a1 at µℓ become single at µℓ+1 while the formerly single

agents b1 and c1 get matched at µℓ+1.

We claim that (a2, b1, c3) is a blocking triplet for µℓ+1. This is because c3 is single at µℓ+1 while

a2 and b1 prefer b1 and c3 to µℓ+1(a2) = µℓ(a2) and µℓ+1(b1) = c1, respectively. We next obtain

another matching µℓ+2 by satisfying the blocking triplet (a2, b1, c3) for µℓ+1. We note that |T (µℓ+2)| =

|T (µℓ+1)| − 3 since a1, c1, and the partners of a2 at µℓ+1 become single at µℓ+2 while the formerly

single agent c3 gets matched at µℓ+2. We also note that µℓ+2 is unstable since some agents are single at

µℓ+2. We now return to step 2 with the unstable matching µℓ+2 with the smaller number of matched

agents |T (µℓ+2)| < |T (µℓ)|.

Subcase 7–3–2. We have c1 ≻b1 c3.

We note that (a2, b1, c3) is a blocking triplet for µℓ. This is because b1 and c3 are single at µℓ

while a2 prefers b1 to µℓ(a2). We first obtain another matching µℓ+1 by satisfying the blocking triplet

(a2, b1, c3) for µℓ. We note that |T (µℓ+1)| = |T (µℓ)| since the partners of a2 at µℓ become single at

µℓ+1 while the formerly single agents b1 and c3 get matched at µℓ+1.

We claim that (a1, b1, c1) is a blocking triplet for µℓ+1. This is because c1 is single at µℓ+1 while

a1 and b1 prefer b1 and c1 to µℓ+1(a1) = µℓ(a1) and µℓ+1(b1) = c3, respectively. We next obtain

another matching µℓ+2 by satisfying the blocking triplet (a1, b1, c1) for µℓ+1. We note that |T (µℓ+2)| =

|T (µℓ+1)| − 3 since a2, c3, and the partners of a1 at µℓ+1 become single at µℓ+2 while the formerly

single agent c1 gets matched at µℓ+2. We also note that µℓ+2 is unstable since some agents are single at

µℓ+2. We now return to step 2 with the unstable matching µℓ+2 with the smaller number of matched

agents |T (µℓ+2)| < |T (µℓ)|.

Step 8. We note that, whenever step 8 is reached, |S(µℓ)| ≥ 6 since we went through step 5. We also

note that, since we went through steps 6 and 7, there exists a blocking triplet (a, b, c) for µℓ such that

a ∈ T (µℓ), b ∈ S(µℓ), and c ∈ S(µℓ), but there does not exist another blocking triplet (d, e, f) for µℓ such

that d ∈ T (µℓ)\{a, µℓ(a), µℓ(µℓ(a))}, e ∈ S(µℓ), and f ∈ S(µℓ). We now investigate whether there exists

a pair of agents (i, j) such that i ∈ T (µℓ) \ {a, µℓ(a), µℓ(µℓ(a))} and j ∈ S(µℓ) ∪ {a, µℓ(a), µℓ(µℓ(a))}

and j ≻i µℓ(i). If there does not exist the pair (i, j) described above, then we proceed to step 9.

4It is possible that c3 = c2, but even so, it does not affect our argument.
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Otherwise, one of the following four cases must apply. These four cases are mutually exclusive and

collectively exhaustive.

Case 8–1. j ∈ S(µℓ).

Without loss of generality, we may assume that (i, j) ∈ N1 × N2. Choose any h ∈ N3 ∩ S(µℓ).

We note that (i, j, h) is a blocking triplet for µℓ. This is because j and h are single at µℓ while i

prefers j to µℓ(i). However, the existence of the blocking triplet (i, j, h) for µℓ is in contradiction with

the assumption of the non-existence of the triplet (d, e, f) described above. Therefore, this case never

applies.

Case 8–2. j = a.

We note that (i, j, b) is a blocking triplet for µℓ. This is because b is single at µℓ while i and j = a

prefer j and b to µℓ(i) and µℓ(a), respectively. We also note that the triplet (i, j, b) ∈ T (µℓ)× T (µℓ)×

S(µℓ) is such that one of these agents is single and the other two agents are not single at µℓ. However,

the existence of the blocking triplet (i, j, b) for µℓ is in contradiction with the fact that we went through

step 4 and proceeded to step 5 before reaching step 8. Therefore, this case never applies.

Case 8–3. j = µℓ(a).

Without loss of generality, we may assume that (a, µℓ(a), µℓ(µℓ(a))) = (a1, b1, c1) ∈ N1 ×N2 ×N3,

(a, b, c) = (a1, b2, c2) ∈ N1 ×N2 ×N3, and (i, j) = (a0, b1) ∈ N1 ×N2. Since |S(µℓ)| ≥ 6, we can choose

any c3 ∈ N3 ∩ S(µℓ) such that c3 ̸= c2. We note that (a1, b2, c3) as well as (a1, b2, c2) is a blocking

triplet for µℓ. This is because b2, c3, and c2 are single at µℓ while a1 prefers b2 to µℓ(a1) = b1.

Without loss of generality, suppose that c2 ≻b2 c3. We first obtain another matching µℓ+1 by

satisfying the blocking triplet (a1, b2, c3) for µℓ. We note that |T (µℓ+1)| = |T (µℓ)| since b1 and c1,

who are the partners of a1 at µℓ, become single at µℓ+1 while the formerly single agents b2 and c3 get

matched at µℓ+1. Consequently, |S(µℓ+1)| = |S(µℓ)| ≥ 6. Choose any a2 ∈ N1∩S(µℓ+1). We note that

(a0, b1, c1) ∈ T (µℓ+1) × S(µℓ+1) × S(µℓ+1) is a blocking triplet for µℓ+1 since a0 = i prefers b1 = j to

µℓ+1(a0) = µℓ(a0). We also note that (b2, c2, a2) ∈ T (µℓ+1) × S(µℓ+1) × S(µℓ+1) is a blocking triplet

for µℓ+1 since b2 prefers c2 to µℓ+1(b2) = c3. We now go through the same procedure as step 7 with the

unstable matching µℓ+1. Then, case 7–1 applies and eventually we will return to step 2 with another

unstable matching with the smaller number of matched agents.

Case 8–4. j = µℓ(µℓ(a)).

Without loss of generality, we may assume that (a, µℓ(a), µℓ(µℓ(a))) = (a1, b1, c1) ∈ N1 ×N2 ×N3,

(a, b, c) = (a1, b2, c2) ∈ N1 ×N2 ×N3, and (i, j) = (b0, c1) ∈ N2 ×N3. Since |S(µℓ)| ≥ 6, we can choose

any c3 ∈ N3 ∩ S(µℓ) such that c3 ̸= c2. We note that (a1, b2, c3) as well as (a1, b2, c2) is a blocking
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triplet for µℓ. This is because b2, c3, and c2 are single at µℓ while a1 prefers b2 to µℓ(a1) = b1.

Without loss of generality, suppose that c2 ≻b2 c3. We first obtain another matching µℓ+1 by

satisfying the blocking triplet (a1, b2, c3) for µℓ. We note that |T (µℓ+1)| = |T (µℓ)| since b1 and c1, who

are the partners of a1 at µℓ, become single at µℓ+1 while the formerly single agents b2 and c3 get matched

at µℓ+1. Consequently, |S(µℓ+1)| = |S(µℓ)| ≥ 6. Choose any two different agents a2, a3 ∈ N1∩S(µℓ+1).

We note that (b0, c1, a3) ∈ T (µℓ+1)×S(µℓ+1)×S(µℓ+1) is a blocking triplet for µℓ+1 since b0 = i prefers

c1 = j to µℓ+1(b0) = µℓ(b0). We also note that (b2, c2, a2) ∈ T (µℓ+1)×S(µℓ+1)×S(µℓ+1) is a blocking

triplet for µℓ+1 since b2 prefers c2 to µℓ+1(b2) = c3. We now go through the same procedure as step 7

with the unstable matching µℓ+1. Then, case 7–2 applies and eventually we will return to step 2 with

another unstable matching with the smaller number of matched agents.

Step 9. We note that, whenever step 9 is reached, |S(µℓ)| ≥ 6 since we went through step 5.

We also note that, since we went through steps 6 and 7, there exists a blocking triplet (a, b, c) for µℓ

such that a ∈ T (µℓ), b ∈ S(µℓ), and c ∈ S(µℓ). Furthermore, since we went through step 8, for any

i ∈ T (µℓ) \ {a, µℓ(a), µℓ(µℓ(a))} and j ∈ S(µℓ) ∪ {a, µℓ(a), µℓ(µℓ(a))}, we have µℓ(i) ≻i j.

Let us define Ñ and N̂ by Ñ ≡ T (µℓ) \ {a, µℓ(a), µℓ(µℓ(a))} and N̂ ≡ S(µℓ)∪ {a, µℓ(a), µℓ(µℓ(a))},

respectively. Without loss of generality, we may assume that (a, µℓ(a), µℓ(µℓ(a))) = (a1, b1, c1) ∈

N1 × N2 × N3 and (a, b, c) = (a1, b2, c2) ∈ N1 × N2 × N3. Let µ̂∗ be a stable matching for the

problem (N̂ , (�a)a∈N̂ ) and let {(âk, b̂k, ĉk)}|N̂|/3
k=1 be the collection of triplets that are matched at µ̂∗,

i.e., (âk, b̂k, ĉk) ∈ µ̂∗ for k = 1, . . . , |N̂ |/3. We now consider the following six cases. These six cases are

mutually exclusive and collectively exhaustive.

Case 9–1. b1 = µ̂∗(a1) and c1 = µ̂∗(b1).

In this case, we must have a1 = µ̂∗(c1) and (a1, b1, c1) ∈ µ̂∗. Without loss of generality, we may

assume that (a1, b1, c1) = (â1, b̂1, ĉ1). We now obtain a sequence of matchings µℓ, . . . , µℓ+|N̂|/3−1 for

the problem (N, (�a)a∈N ) such that for each k = 1, . . . , |N̂ |/3 − 1, we obtain µℓ+k from µℓ+k−1 by

satisfying the blocking triplet (âk+1, b̂k+1, ĉk+1). We note that (âk+1, b̂k+1, ĉk+1) is in fact a blocking

triplet for µℓ+k−1 since âk+1, b̂k+1, and ĉk+1 are single at µℓ+k−1.

We claim that µℓ+|N̂|/3−1 is a stable matching. Suppose, by way of contradiction, that there exists

a blocking triplet (a′, b′, c′) for µℓ+|N̂|/3−1.

Since µ̂∗ is a stable matching for the problem (N̂ , (�a)a∈N̂ ), it cannot be the case that {a′, b′, c′} ⊂

N̂ . This is because, considering the fact that µℓ+|N̂|/3−1(i) = µ̂∗(i) for all i ∈ N̂ , if {a′, b′, c′} ⊂ N̂ then

the triplet (a′, b′, c′) is a blocking triplet for µ̂∗ for the problem (N̂ , (�a)a∈N̂ ), which is in contradiction
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with the stability of µ̂∗.

Since we went through step 3 before reaching step 9, it cannot be the case that {a′, b′, c′} ⊂ Ñ .

This is because, considering the fact that µℓ+|N̂|/3−1(i) = µℓ(i) for all i ∈ Ñ , if {a′, b′, c′} ⊂ Ñ then

the triplet (a′, b′, c′) is a blocking triplet for µℓ such that a′ ∈ T (µℓ), b
′ ∈ T (µℓ), and c′ ∈ T (µℓ). The

existence of the blocking triplet (a′, b′, c′) is in contradiction with the fact that we proceeded to step 4.

Therefore, it must be the case that there exists a pair of agents (i, j) ∈ Nn × Nn+1 for some

n ∈ {1, 2, 3} such that i ∈ {a′, b′, c′} ∩ Ñ and j ∈ {a′, b′, c′} ∩ N̂ . Without loss of generality, we may

assume that (i, j) = (a′, b′). Since we went through step 8 before reaching step 9, we have µℓ(a
′) ≻a′ b′.

Furthermore, since a′ ∈ Ñ and hence µℓ+|N̂|/3−1(a
′) = µℓ(a

′), we have µℓ+|N̂|/3−1(a
′) ≻a′ b′, which is

in contradiction with the assumption that (a′, b′, c′) is a blocking triplet for µℓ+|N̂|/3−1.

Hence, at the end of case 9–1, we obtain a stable matching in the sequence of matchings mentioned

in the theorem.

Case 9–2. b1 ̸= µ̂∗(a1) and c1 ̸= µ̂∗(b1) and a1 ̸= µ̂∗(c1).

We claim that there exists h ∈ {a1, b1, c1} such that µ̂∗(h) ≻h µℓ(h). Suppose, by way of contradic-

tion, that µℓ(a1) ≻a1 µ̂∗(a1) and µℓ(b1) ≻b1 µ̂∗(b1) and µℓ(c1) ≻c1 µ̂∗(c1). Since (µℓ(c1), µℓ(a1), µℓ(b1)) =

(a1, b1, c1), the triplet (a1, b1, c1) is a blocking triplet for µ̂∗ for the problem (N̂ , (�a)a∈N̂ ), which is in

contradiction with the stability of µ̂∗.

Having proved the claim, we may assume that h = a1, that is, µ̂∗(a1) ≻a1 µℓ(a1) without loss of

generality. For notational convenience, we denote (a1, µ̂
∗(a1), µ̂

∗(µ̂∗(a1))) by (a1, b3, c3).

Since N̂ = S(µℓ) ∪ {a1, b1, c1} and b3 ∈ N2 ∩ N̂ and b3 ̸= b1, we have b3 ∈ S(µℓ). We also note

that c3 ∈ S(µℓ). This is because, if c3 /∈ S(µℓ) and hence c3 = c1, we have µ̂∗(c1) = µ̂∗(c3) =

µ̂∗(µ̂∗(µ̂∗(a1))) = a1, which is in contradiction with the assumption a1 ̸= µ̂∗(c1) in case 9–2.

We note that (a1, b3, c3) is a blocking triplet for µℓ since b3 ≻a1 µℓ(a1), and b3 and c3 are single at

µℓ. We now obtain another matching µℓ+1 by satisfying the blocking triplet (a1, b3, c3) for µℓ.

Considering the fact that N̂ = S(µℓ+1)∪{a1, b3, c3} and (a1, b3, c3) ∈ µ̂∗, we can apply the same ar-

gument to the matching µℓ+1 as the one applied to the matching µℓ in case 9–1. That is, we may assume

that (a1, b3, c3) = (â1, b̂1, ĉ1) without loss, and we obtain a sequence of matchings µℓ+1, . . . , µℓ+|N̂|/3,

where µℓ+|N̂|/3 is stable.

Hence, at the end of case 9–2, we obtain a stable matching in the sequence of matchings mentioned

in the theorem.

Case 9–3. Cases 9–1 and 9–2 do not apply, but the following conditions hold: b2 = µ̂∗(a1) and

there exists c′ ∈ S(µℓ) such that c′ = µ̂∗(b2).

13



－ 84 －

We note that (a1, b2, c
′) is a blocking triplet for µℓ since b2 ≻a1 µℓ(a1), and b2 and c′ are single at

µℓ. We now obtain another matching µℓ+1 by satisfying the blocking triplet (a1, b2, c
′) for µℓ.

Considering the fact that N̂ = S(µℓ+1)∪{a1, b2, c
′} and (a1, b2, c

′) ∈ µ̂∗, we can apply the same ar-

gument to the matching µℓ+1 as the one applied to the matching µℓ in case 9–1. That is, we may assume

that (a1, b2, c
′) = (â1, b̂1, ĉ1) without loss, and we obtain a sequence of matchings µℓ+1, . . . , µℓ+|N̂|/3,

where µℓ+|N̂|/3 is stable.

Hence, at the end of case 9–3, we obtain a stable matching in the sequence of matchings mentioned

in the theorem.

Case 9–4. Cases 9–1 and 9–2 do not apply, but the following conditions hold: b2 = µ̂∗(a1) and

there does not exist c′ ∈ S(µℓ) such that c′ = µ̂∗(b2).

Since N̂ = S(µℓ) ∪ {a1, b1, c1} and µ̂∗(b2) ∈ N3 ∩ N̂ and µ̂∗(b2) /∈ S(µℓ), we have µ̂∗(b2) = c1.

Since |S(µℓ)| ≥ 6, at least two agents are single in each gender. So, we may assume that there

exists {c4, c5} ⊂ N3 ∩ S(µℓ) such that c4 ≻b2 c5. Evidently, c4 ̸= µ̂∗(b2) and c5 ̸= µ̂∗(b2) since

µ̂∗(b2) = c1 ∈ T (µℓ). Furthermore, we can choose a4 ∈ N1 ∩ S(µℓ) such that a4 ̸= µ̂∗(c4). Evidently,

b2 ̸= µ̂∗(a4) since b2 = µ̂∗(a1).

We note that (a1, b2, c5) is a blocking triplet for µℓ since b2 ≻a1 µℓ(a1), and b2 and c5 are single at

µℓ. We now obtain another matching µℓ+1 by satisfying the blocking triplet (a1, b2, c5) for µℓ.

We next note that (a4, b2, c4) is a blocking triplet for µℓ+1 since c4 ≻b2 c5 = µℓ+1(b2), and a4 and

c4 are single at µℓ+1. We obtain another matching µℓ+2 by satisfying the blocking triplet (a4, b2, c4)

for µℓ+1.

Considering the fact that N̂ = S(µℓ+2) ∪ {a4, b2, c4} and b2 ̸= µ̂∗(a4) and c4 ̸= µ̂∗(b2) and a4 ̸=

µ̂∗(c4), we can apply the same argument to the matching µℓ+2 as the one applied to the matching µℓ

in case 9–2.

Eventually, at the end of case 9–4, we obtain a stable matching in the sequence of matchings

mentioned in the theorem.

Case 9–5. Cases 9–1 and 9–2 do not apply, but the following conditions hold: b2 ̸= µ̂∗(a1) and

there exists c′ ∈ S(µℓ) such that c′ ̸= µ̂∗(b2) and a1 ̸= µ̂∗(c′).

We note that (a1, b2, c
′) is a blocking triplet for µℓ since b2 ≻a1 µℓ(a1), and b2 and c′ are single at

µℓ. We now obtain another matching µℓ+1 by satisfying the blocking triplet (a1, b2, c
′) for µℓ.

Considering the fact that N̂ = S(µℓ+1)∪{a1, b2, c
′} and b2 ̸= µ̂∗(a1) and c′ ̸= µ̂∗(b2) and a1 ̸= µ̂∗(c′),

we can apply the same argument to the matching µℓ+1 as the one applied to the matching µℓ in case 9–2.

Eventually, at the end of case 9–5, we obtain a stable matching in the sequence of matchings
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mentioned in the theorem.

Case 9–6. Cases 9–1 and 9–2 do not apply, but the following conditions hold: b2 ̸= µ̂∗(a1) and

there does not exist c′ ∈ S(µℓ) such that c′ ̸= µ̂∗(b2) and a1 ̸= µ̂∗(c′).

Since |S(µℓ)| ≥ 6 and there does not exist c′ ∈ S(µℓ) such that c′ ̸= µ̂∗(b2) and a1 ̸= µ̂∗(c′), it must

be the case that N3∩S(µℓ) = {c6, c7} for some (c6, c7) such that c6 = µ̂∗(b2) and a1 = µ̂∗(c7). We note

that c6 ̸= c7 because, if c6 = c7, we have µ̂∗(a1) = µ̂∗(µ̂∗(c7)) = µ̂∗(µ̂∗(c6)) = µ̂∗(µ̂∗(µ̂∗(b2))) = b2,

which is in contradiction with the assumption b2 ̸= µ̂∗(a1) in case 9–6. Since c6 ̸= c7, we have

c7 ̸= µ̂∗(b2) and a1 ̸= µ̂∗(c6). We consider the following two subcases.

Subcase 9–6–1. We have c6 ≻b2 c7.

We choose a5 ∈ N1 ∩ N̂ such that a5 = µ̂∗(c6). Since a1 ̸= µ̂∗(c6), we have a5 ̸= a1. Furthermore,

since N̂ = S(µℓ) ∪ {a1, b1, c1} and a5 ̸= a1, we have a5 ∈ S(µℓ).

We note that (a1, b2, c7) is a blocking triplet for µℓ since b2 ≻a1 µℓ(a1), and b2 and c7 are single at

µℓ. We now obtain another matching µℓ+1 by satisfying the blocking triplet (a1, b2, c7) for µℓ.

We next note that (a5, b2, c6) is a blocking triplet for µℓ+1 since c6 ≻b2 c7 = µℓ+1(b2), and a5 and

c6 are single at µℓ+1. We obtain another matching µℓ+2 by satisfying the blocking triplet (a5, b2, c6)

for µℓ+1.

Considering the fact that N̂ = S(µℓ+2)∪{a5, b2, c6} and (a5, b2, c6) ∈ µ̂∗, we can apply the same ar-

gument to the matching µℓ+2 as the one applied to the matching µℓ in case 9–1. That is, we may assume

that (a5, b2, c6) = (â1, b̂1, ĉ1) without loss, and we obtain a sequence of matchings µℓ+2, . . . , µℓ+|N̂|/3+1,

where µℓ+|N̂|/3+1 is stable.

Hence, at the end of subcase 9–6–1, we obtain a stable matching in the sequence of matchings

mentioned in the theorem.

Subcase 9–6–2. We have c7 ≻b2 c6.

Since |S(µℓ)| ≥ 6, at least two agents are single in each gender. So, we can choose a6 ∈ N1 ∩ S(µℓ)

such that b2 ̸= µ̂∗(a6). Evidently, a6 ̸= µ̂∗(c7) since µ̂∗(c7) = a1 ∈ T (µℓ).

We note that (a1, b2, c6) is a blocking triplet for µℓ since b2 ≻a1 µℓ(a1), and b2 and c6 are single at

µℓ. We now obtain another matching µℓ+1 by satisfying the blocking triplet (a1, b2, c6) for µℓ.

We next note that (a6, b2, c7) is a blocking triplet for µℓ+1 since c7 ≻b2 c6 = µℓ+1(b2), and a6 and

c7 are single at µℓ+1. We obtain another matching µℓ+2 by satisfying the blocking triplet (a6, b2, c7)

for µℓ+1.

Considering the fact that N̂ = S(µℓ+2) ∪ {a6, b2, c7} together with the fact that b2 ̸= µ̂∗(a6) and

c7 ̸= µ̂∗(b2) and a6 ̸= µ̂∗(c7), we can apply the same argument to the matching µℓ+2 as the one applied
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to the matching µℓ in case 9–2.

Eventually, at the end of subcase 9–6–2, we obtain a stable matching in the sequence of matchings

mentioned in the theorem.

We summarize the algorithm in our proof. Our process starts with an arbitrary unstable matching,

and ends with a stable matching in step 1, 5, 6, or 9. In other steps such as steps 3, 4, 7, and 8,

we obtain another unstable matching with the smaller number of matched agents than before, and we

return to step 2. The loop starting in step 2 is not infinite because the number of agents is finite. Our

process exits from the loop at some point and ends in step 5, 6, or 9.

Our approach toward the construction of a sequence of matchings in the proof could be called as a

scrap-and-build approach. In the loop, we prompt matched agents to break bonds and become single.

After we increase the number of single agents as much as possible, we prompt single agents to get

matched in order to form a stable matching.

We finally state the following corollary as Roth and Vande Vate [1990] have established for two-sided

matching problems.

Corollary 1. Let µ1 be an arbitrary unstable matching for a three-sided cyclic matching problem,

which is specified by (N, (�a)a∈N ) with N ≡ N1 ∪N2 ∪N3 and |Nn| = |N |/3 for n ∈ {1, 2, 3}. Suppose

that for any N̄1 ⊂ N1, N̄2 ⊂ N2, and N̄3 ⊂ N3 with |N̄1| = |N̄2| = |N̄3|, there exists a stable matching

for the problem (N̄ , (�a)a∈N̄ ) with N̄ ≡ N̄1∪N̄2∪N̄3. Consider a random sequence R(µ1) = (µ1, µ2, . . .)

where each µℓ+1 is obtained from µℓ by satisfying a blocking triplet that is chosen at random from the

blocking triplets for µℓ. If the probability that each blocking triplet for µℓ will be chosen is positive and

bounded away from zero, then R(µ1) converges to a stable matching with probability one.

4. Conclusion

In the present paper, we have obtained the following result: for a three-sided cyclic matching problem

(N, (�a)a∈N ) with N ≡ N1 ∪ N2 ∪ N3 and |Nn| = |N |/3 for n ∈ {1, 2, 3}, if a stable matching exists

for the problem itself and for any problem (N̄ , (�a)a∈N̄ ) constructed of N̄ ≡ N̄1 ∪ N̄2 ∪ N̄3 with

N̄n ⊂ Nn and |N̄n| = |N̄ |/3 for n ∈ {1, 2, 3}, there exists a finite sequence of successive blockings from

an arbitrary unstable matching to a stable matching.

To prove the result, we have used the fact that the problem (N, (�a)a∈N ) has a stable matching

in step 1. We have also used the fact that the problem (S(µℓ), (�a)a∈S(µℓ)) has a stable matching in
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step 6 and the fact that the problem (N̂ , (�a)a∈N̂ ) has a stable matching in step 9. We recall that

S(µℓ) � N in step 6 and N̂ ⊆ N in step 9.

Pashkovich and Poirrier [2018] and other pioneers showed that a stable matching exists for the case

|Nn| ≤ 5. When |Nn| = |N |/3 ≤ 5, we have |S(µℓ)|/3 ≤ 4 in step 6 and |N̂ |/3 ≤ 5 in step 9, and

hence each of the problems, (N, (�a)a∈N ) in step 1, (S(µℓ), (�a)a∈S(µℓ)) in step 6, and (N̂ , (�a)a∈N̂ )

in step 9, has a stable matching. Thus, we can state the following corollary.

Corollary 2. Consider any three-sided cyclic matching problem with |Nn| ≤ 5. Starting from an

arbitrary unstable matching, there exists a finite sequence of successive blockings leading to a stable

matching.

Lam and Plaxton [2019] showed that a stable matching does not necessarily exist for the case

|Nn| = 6 by utilizing the example presented by Biro and McDermid [2010]. When |Nn| = |N |/3 = 6,

we have |S(µℓ)|/3 ≤ 5 in step 6, and hence the problem (S(µℓ), (�a)a∈S(µℓ)) in step 6 has a stable

matching. The problem (N̂ , (�a)a∈N̂ ) in step 9 has a stable matching if |N̂ |/3 ≤ 5, but it may or may

not have a stable matching if |N̂ |/3 = 6. However, if we assume the existence of a stable matching for

the problem (N, (�a)a∈N ) when |Nn| = |N |/3 = 6, the existence of a stable matching for the problem

(N̂ , (�a)a∈N̂ ) in step 9 is guaranteed since both of the problems are identical if |N̂ |/3 = 6. Thus, we

can state the following.

Corollary 3. Consider any three-sided cyclic matching problem with |Nn| = 6 for which a stable

matching exists. Starting from an arbitrary unstable matching, there exists a finite sequence of successive

blockings leading to a stable matching.

References

Alkan, A. [1988], “Nonexistence of stable threesome matchings,” Mathematical Social Sciences Vol.16, pp.207–

209.

Biro, P. and E. McDermid [2010], “Three-sided stable matchings with cyclic preferences,” Algorithmica Vol.58,

pp.5–18.

Boros, E., Gurvich, V., Jaslar, S. and D. Krasner [2004], “Stable matchings in three-sided systems with cyclic

preferences,” Discrete Mathematics Vol.289, pp.1–10.

Danilov, V. I. [2003], “Existence of stable matchings in some three-sided systems,” Mathematical Social Sciences

Vol.46, pp.145–148.

Eriksson, K., Sjostrand, J. and P. Strimling [2006], “Three-dimensional stable matching with cyclic preferences,”

Mathematical Social Sciences Vol.52, pp.77–87.

17



－ 88 －

Gale, D. and L. S. Shapley [1962], “College admissions and the stability of marriage,” American Mathematical

Monthly Vol.69, pp.9–15.

Lam, C. and C. G. Plaxton [2019], “On the existence of three-dimensional stable matchings with cyclic prefer-

ences,” arXiv: 1905.02844 [cs.GT].

Pashkovich, K. and L. Poirrier [2018], “Three-dimensional stable matching with cyclic preferences,” arXiv:

1807.05638 [cs.GT].

Roth, A. E. and J. H. Vande Vate [1990], “Random paths to stability in two-sided matching,” Econometrica

Vol.58, pp.1475–1480.

Samejima, Y. [2018], “Random paths to stability in Danilov’s three-sided matching model,” The Economic

Review of Toyo University Vol.43(2), pp.101–114.

Woeginger, G. J. [2013], “Core stability in hedonic coalition formation,” in: van Emde Boas, P., Groen, F. C.

A., Italiano, G. F., Nawrocki, J. and H. Sack (eds.), SOFSEM 2013: Theory and Practice of Computer

Science, Lecture Notes in Computer Science Vol.7741, pp.33–50, Heidelberg: Springer.

18


