皮膚血流の影響を分離・除去した近赤外光法による前額部脳酸素化動態測定法の確立

著者	平澤 愛
学位授与大学	東洋大学
取得学位	博士
学位の分野	工学
報告番号	乙第 甲号
学位授与年月日	2015年3月25日

URL
http://id.nii.ac.jp/1060/00007153/

Creative Commons : http://creativecommons.org/licenses/by-nc-nd/3.0/deed.ja
皮膚血流の影響を分離・除去した近赤外分光法
による前額部脳酸素化動態測定法の確立
目次

第1章 緒言

第2章 研究課題1：運動時の前額部脳酸素化動態と脳血流応答の関係性
 2.1 はじめに
 2.2 実験方法
 2.3 結果
 2.4 考察
 2.5 まとめ

第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響
 3.1 はじめに
 3.2 実験方法
 3.3 結果
 3.4 考察
 3.5 まとめ

第4章 研究課題3：皮膚血流量を除去した前額部脳酸素化動態算出法の開発
 4.1 はじめに
 4.2 実験方法
 4.3 結果
 4.4 考察
 4.5 まとめ

第5章 総括
 5.1 研究課題の総括
 5.2 結語

第6章 参考文献

第7章 研究業績一覧

謝辞
第1章 緒言

近赤外分光法（Near Infrared Spectroscopy:NIRS）の生体への応用は、1937年に組織での酸素化動態測定装置として利用されたことから始まる。その後、Jöbsis（1977）により、近赤外光を用いてヒトとネコの脳および露出されたイヌの心臓を用いて組織での酸素化動態が測定された。この報告以降、NIRSは、生体組織の血中酸素濃度を外部より非侵襲的に測定可能な新しい測定技術として開発が進められた。1980年代になると、手術室や集中治療室などにおいて患者の脳内酸素化動態のモニタリングシステムとして研究・開発が行われ、医療機器として臨床分野へ普及した（Ferrari et al., 1986; Hampson et al., 1990; Wyatt et al., 1990）。NIRSは、前額部に測定用プローブを貼付するのみで簡易に脳酸素化動態の測定が行えることから臨床現場において広く活用されている。特に、自律神経活動が遮断されることにより血圧調節機能が働くない全身麻酔下の手術中などにおいて、脳機能を保護・維持するための重要な情報を得る測定法として用いられている。近年では、NIRS信号の応答による脳酸素化動態の測定・分析から脳神経活動を同定し、認知症やうつ病の早期診断などの臨床医学や運動中の脳神経活動の同定により運動・健康・予防医学分野への応用も試みられている。NIRSは、今後さらに様々な分野において有用な測定法として発展していくことが期待されている。

NIRS測定に用いられる波長700nmから1000nmの近赤外光は、他の波長領域の光と比較して皮膚や骨などの生体組織への透過性が高い一方、血中ヘモグロビンにはよく吸収される特性がある。NIRS測定では、近赤外光がヘモグロビンの酸素化状態により、光の吸収係数の波長依存性が異なることを利用して（Wray et al., 1988），生体内的酸素化ヘモグロビンおよび脱酸素化ヘモグロビン濃度変化量をリアルタイムに計測することができる。また、測定時の姿勢や動きの制限が少なく、簡易に測定が可能であるなどの利点が数多く、その応用の幅も大きい。

一方、NIRSは空間分解能が低く、脳深部の測定が不可能である。また、測定
第1章 緒言

値は絶対値での評価が難しく、条件間の相対値の比較によって解析が行われるため、測定者間の比較が容易でないなどの問題点も抱えている。さらに重要な問題点として、NIRS 信号は頭蓋外血流量変化の影響を受けることが指摘されている (Germon et al., 1994; Smielewski et al., 1995; Germon et al., 1999; Kohri et al., 2002; Kohno et al., 2007; Minati et al., 2011)。近年の報告では、頭蓋外血流量が大きく変化する条件下では、NIRS により測定した脳酸素化動態は、実際の脳酸素化動態を正確に反映していないことが報告されている (Brassard et al., 2010; Ogoh et al., 2011; Ogoh et al., 2014)。NIRS 測定では、近赤外光を照射および検出する測定用プローブを皮膚表面に直接貼付し、照射光および検出光の吸光度変化から酸素化動態を同定する。そのため、皮膚表面から照射された近赤外光は、頭皮、頭蓋骨、くも膜および大脳皮質などの異なる組織を伝播し、その一部が再び皮膚表面まで戻る。したがって、検出光は、頭部組織の様々な部位を伝播した光であることから大脳皮質以外の透過組織における血流変化も同時に反映することが考えられる。

Brassard et al. (2010) は、手術中などに昇圧剤として用いられるフェニレフリン（α1 アゴニスト）を投与すると、血圧および中大脳動脈平均血流速度 (MCA Vmean) は上昇するのに対し、NIRS により測定した前額部脳酸素化動態は低下することを報告した。このことについて、Brassard et al. (2010) は、昇圧剤の投与により交感神経活動が亢進し、末梢の脳血管収縮が生じることで脳酸素化動態が低下したと指摘している。しかしながら、脳機能を維持するために昇圧剤を投与しているにも関わらず脳酸素化動態が低下しているのは疑問となる。このことに対して、Ogoh et al. (2011) は、同様に昇圧剤（フェニレフリン）を投与した際の内頸動脈血流量を超音波法により測定を行い、頭蓋内血流量は維持されていることを明らかにした。したがって、昇圧剤投与による NIRS 信号の低下は、頭蓋内血流量の減少によるものではなく、別の生理要因が関与していると考えられた。そこで、Ogoh et al. (2014) は、頭蓋外の顔面および皮膚に血液を供給している外頸動脈血流量の変化に着目して実験を行った。その結果、昇圧剤（フェニレフリン）投与により外頸動脈血流量が減少していることが明らかとなった。この結果は、昇圧剤投与時の NIRS 測定による前額部脳酸素化動態の低下は、頭蓋内血流量の低下が原因ではなく、NIRS 信号が頭蓋内血流変化
よりも頭蓋外血流量変化を反映していたことを示唆している。さらに、Sørensen et al. (2012) は、NIRS を用いた前額部脳酸素化動態の変化とレーザードプラーフ法による前額部皮膚血流量変化の間には有意な相関関係があることを報告しており、Ogoh et al. (2014) の先行研究の結果を支持している。これらの先行研究から、NIRS による脳酸素化動態の測定は、条件により頭蓋外血流量変化の影響を受け、実際の脳酸素化動態を正確に反映しない可能性が考えられる。手術中など生死に関わる状況において、正確な脳酸素化動態のモニタリングは、必要不可欠であり、これらの早急な問題解決が重要となる。

そこで、本研究はNIRSの問題点として指摘されている頭蓋外血流量の影響に着目し、その影響を除去するための前額部脳酸素化動態測定法の確立を目的として実験を行った。まず、研究課題1では、NIRS信号が皮膚血流量の変化した条件において前額部脳酸素化動態を正確に反映するか否かを検討した。そこでは、脳神経活動の亢進および皮膚血流量の増加が共に生じる多段階動的運動中において、NIRSによる前額部脳酸素化動態と脳血流応答および皮膚血流量変化について、それぞれの関係性を明らかにした。次に、研究課題2では、NIRS信号に含まれる頭蓋外血流量の影響度を明らかにするために、体循環変化を伴わない定量的な前額部皮膚血流量変化が前額部脳酸素化動態に及ぼす影響を検討した。

また、測定用プローブの送光部－受光部間距離の違いがNIRS信号に及ぼす影響も合わせて検討した。研究課題2において、NIRS信号に影響を及ぼす皮膚血流量は、測定対象者間の解剖学的要因により大きさばらつきがあることが明らかとなった。この知見から、研究課題3では、測定対象者ごとに異なるNIRS信号に対する皮膚血流量の影響を同定することによる正確な脳酸素化動態分析方法を考察し、その妥当性を検証した。
第２章
研究課題１：運動時の前額部脳酸素化動態と脳血流応答の関係性

2.1 はじめに

脳は、自律神経活動および認知機能などの中枢を担っており、生命機能を維持するために脳への適切な血液供給は必要不可欠である。そのため、脳は、その循環動態を維持するために脳特有の循環調節機能を有しており、例えば、脳血管は末梢血管と比較して、血圧や血中二酸化炭素分圧の変化に対してより敏感に反応する。高齢者や脳疾患者では、この脳循環調節機能が低下することが報告されている（Eames et al., 2002）。一方、習慣的な運動は、加齢に伴う脳血流量の減少を抑制し（Ainslie et al., 2008）、脳疾患および認知症発症リスクを軽減させる（Taddei et al., 2000）。つまり、習慣的な運動の実施により高齢者や脳疾患者における脳循環調節機能の改善が期待されている。そのため、様々な運動環境下において脳血流を測定することにより、運動中の脳循環調節機能を明らかにする試みが行われてきた。しかしながら、脳循環は非常に複雑な生理メカニズムにより調節されているため、脳循環調節機能については、不明な点が数多く残されている。このような現状において、脳循環調節系疾患や認知症などの発症メカニズムを解明し、治療法の開発、さらに予防医学に貢献するためには、正確な脳血流量、脳酸素化動態および脳神経活動の測定が重要となる。

運動中の脳血流量は、変化しないと長く考えられてきた（Rowell, 1993）。この考えは、Kety–Schmidt法により測定されたデータに基づいているが、測定法の問題点が指摘された（Ogoh & Ainslie, 2009）。近年、超音波ドップラー法が広く用いられるようになり、Kety-Schmidt法により測定された脳血流量は、運動中の脳血流量を正確に反映していないことが明らかとなった。自転車運動を用いた最大下動的運動時、経頭蓋ドップラー法（TCD）により測定された頭蓋内の動脈である中大脳動脈（middle cerebral artery: MCA）の平均血流速度（MCA Vmean）は、15％から20％増加することが報告された（Ogoh & Ainslie, 2009; Secher &
第2章 研究課題1：運動時の前額部脳酸素化動態と脳血流応答の関係性

一方、超音波ドップラー診断装置を用いて、最大下の自転車運動時に測定した脳動脈（内頸動脈・椎骨動脈）の血流量は、20%から30%増加することが明らかとなった（Sato & Sadamoto，2010）。さらに、静的運動時においてTCDにより測定したMCA Vmeanは、運動時間に比例して増加することが示された（Ogoh et al.，2010；Miyazawa et al.，2012）。これらの知見から、現在では、運動により脳への血流量が増加するとの考えが主流となり、運動に対する脳循環の正しい生理学的反応として学術的にも受け入れられている。

血流および代謝反応を反映すると考えられているNIRS信号であるが、特に運動中には、これらの変化は大きくなる。Ide & Secher（2000）は、運動中におけるNIRSにより測定した酸素化ヘモグロビン濃度（O2Hb）の増加は、TCDによる脳血流応答と一致しない条件があることを報告した。超音波ドップラー診断装置による多段階運動中の脳血流量は、低強度（40%VO2max）から中強度運動（60%VO2max）までは増加するが、中強度運動以降はレベリングオフし、高強度運動（80%VO2max）では減少する（Sato & Sadamoto，2010；Sato et al.，2011）。また、高強度運動時の脳酸素飽和度は低下することが報告されており（Subudhi et al.，2009）、高強度運動時の脳酸素化動態は脳血流量の減少に伴い低下するのことを示唆する。逆に、NIRSにより測定した前頭葉皮質のO2Hbは、低強度から高強度運動まで連続的に増加した（Ide et al.，1999；Bhambhani et al.，2009）
第2章 研究課題1：運動時の前額部脳酸素化動態と脳血流応答の関係性

2007; Marshall et al., 2008; Subudhi et al., 2008; Peltonen et al., 2009; Subudhi et al., 2009). これらの報告から、運動時のNIRSにより測定した脳酸素化動態は、脳血流応答および脳代謝を正確に反映していない可能性が考えられる。近年の報告では、NIRS信号が皮膚の血流量変化を反映することが指摘されている(Germon et al., 1998; Takahashi et al., 2011). 特に、運動中は前額部の皮膚血流量（SkBF）の増加が大きい(Sato et al., 2011)ことから、運動中のNIRS信号の変化は頭蓋外の皮膚血流量変化を反映しているかもしれないが明らかでない。

そこで、研究課題1では、脳神経活動の亢進およびSkBFの増加が生じる多段階動的運動中において、NIRSによる前額部脳酸素化動態が脳血流応答を反映するか否かを明らかにすることを目的として実験を行った。
2.2 実験方法

A. 被験者
被験者は、健康な若年者10名（男性5名・女性5名）とした。被験者の平均年齢、身長、体重および最高酸素摂取量は、それぞれ、24±5歳、165±8cm、55±8kgおよび46.2±7.2ml・kg⁻¹・min⁻¹であった。それぞれの被験者には、事前に実験の目的、内容および危険性について十分に説明を行い、同意が得られた者のみ、同意書に署名および捺印後、実験に参加した。また、本研究課題は、ヘルシンキ宣言に基づき計画され、日本女子体育大学倫理委員会の承認を得て実施した。

全ての被験者は、非喫煙者とし、心血管系および呼吸器系に疾患が無く、薬剤を常用していない者とした。また、被験者は、習慣的に軽強度から中強度の身体活動を実施している者であった。

実験開始12時間前からカフェインの摂取を制限し、実験開始24時間前から高強度の身体活動およびアルコールの摂取を制限した。また、全ての被験者は、事前に実験装置および手順に慣れるために練習を行ってから、本実験を実施した。

B. 最高酸素摂取量の測定
最高酸素摂取量（VO₂peak）は、本実験の1週間前までに自転車エルゴメーター（Aerobike 800；Combi, Japan）を用いた漸増負荷試験により測定した。被験者は、30W（60回/分）の負荷のペダリング運動を行った後、運動負荷を毎分15Wから20Wずつ漸増させて行き、被験者が毎分60回転を維持できなくなるまで運動を継続させた。被験者は、鼻および口を覆うマスクを装着し1呼吸毎の呼気（breath-by-breath）を質量ガス分析システム（ARCO-2000；Arco System, Japan）にて分析し、最高酸素摂取量を算出した。なお、呼気ガス分析装置は、それぞれの運動の前に標準ガスを用いて校正を行った。

C. 実験プロトコール
被験者は、自転車エルゴメーター（EC-3700；Cateye, Japan）を用いて半仰臥位姿勢のペダリング運動を行った。胎動を最小限にするために、肩紐および
腰ベルトを用いて全身を固定し、頭は背もたれに付けた状態にて運動を行った（図 1）。

実験プロトコールは、3 分間の安静値測定後、40 ％（低強度）、60 ％（中強度）および 80 ％（高強度）VO_{2peak} の自転車運動を各強度 5 分間ずつ、計 15 分間行った（図 2）。ペダルの回転速度は、毎分 60 回転とした。なお、実験中の室温は、22 ℃から 23 ℃の間に保った。

図 1. 実験風景

図 2. 実験プロトコール
D. 測定項目

①中大脳動脈血流速度
中大脳動脈平均血流速度（MCA V mean）は、TCD を用いて計測した（WAKI, Atys Medical, France）。測定は、2 MHz のプローブを用いて、被験者の右こめかみから行った。また、プローブは、実験中に移動しないようにヘッドバンドベルトを用いて固定した。

②脳酸素化動態
脳酸素化動態は、NIRS（NIRO 200, Hamamatsu Photonics KK, Hamamatsu, Japan）により前額部の酸素化ヘモグロビン濃度（Δ O2Hb）、脱酸素化ヘモグロビン濃度（Δ HHb）および総ヘモグロビン濃度（Δ tHb）変化を連続的に測定した。Δ O2Hb および Δ HHb は、775 nm, 810 nm および 850 nm の 3 波長を用いて測定を行い、修正 Lambert-Beer 法を用いて算出した（Delpy et al. 1988; Maki et al. 1995）。Δ tHb は Δ O2Hb と Δ HHb を加算することから、組織酸素飽和度（TOI）は以下の式より算出した。

\[TOI = \frac{\Delta O_2Hb}{\Delta tHb} \times 100 \]

測定用プローブは、被験者の右前額部に両面テープを用いて貼付し、その上から黒色のプローブホルダーおよび黒布を被せることで遮光した。NIRS プローブの送光部−受光部間距離は 40 mm とし、Δ O2Hb, Δ HHb および Δ tHb は安静値からの変化量にて示した。

③前額部皮膚血流量
前額部皮膚血流量（SkBF）は、レーザードップラー法（ALF21, Advance, Japan）を用いて測定した。測定は、NIRS プローブの左横に測定用プローブを両面テープにて貼付し、皮膚表面から 1 mm から 2 mm 下の血流量を連続的に測定した。

④心拍数
心拍数（HR）は、胸部にディスポーザル電極を貼付し、胸部双極誘導法（Redercirc, Danippon Sumitomo Pharmacology, Japan）から心電図の R−R 間隔計測により算出した。
第2章 研究課題1：運動時の前額部脳酸素化動態と脳血流応答の関係性

⑤動脈血圧・心拍出量
動脈血圧は、被験者の中指に圧脈波センサーを装着し、非観血的連続血圧測定装置（Finometer, Finapress Medical Systems BV, Netherlands）により一拍毎の連続血圧を測定し、その波形積分値より平均動脈血圧（MAP）を算出した。
心拍出量（CO）は、性別、年齢、身長および体重を考慮したModel Flow法を用いて算出した。この方法は、連続血圧波形より推定される大動脈インピーダンスから大動脈血圧波形を推定しCOを算出する（Beat Scope 1.1, Finapress Medical Systems BV, Netherlands）。

⑥換気量・酸素摂取量・呼気終末二酸化炭素分圧
換気量（V̇E）、酸素摂取量（V̇O₂）および呼気終末二酸化炭素分圧（ṖETCO₂）は、質量ガス分析システム（ARCO-2000; Arco System, Japan）により連続測定を行った。被験者は、鼻および口を覆うマスクを装着し1呼吸毎（breath-by-breath）の呼気ガスを分析した。

E. データ収集および分析
ΔO₂Hb、ΔHHbおよびΔtHbは5秒毎に、SkBF、HRおよびMAPは1秒毎にアナログ-デジタル変換装置を介してパーソナルコンピューターに取り込み記録した。V̇E、V̇O₂およびṖETCO₂は、1呼吸毎にデータを算出した。また、全ての運動時の値は、それぞれの運動強度における4から5分目の1分間の平均値を用いた（図2）。

F. 統計処理
結果は、全て平均値±標準誤差にて表記した。安静値および運動中の結果は、対応のある一元配置分散分析を行い、有意差が認められた場合にはTukey検定を用いて多重比較を行った（Sigma Stat, Ver.3.5, Hulinks, USA）。また、ΔO₂HbとTOI、MCA V̇meanおよびSkBFの関係性を明らかにするために、個人値をそれぞれプロットし相関分析および重回帰分析を行った。なお、有意水準は全て5%未満とした。
2.3 結果

一元配置分散分析の結果，\(\dot{V}_O_2 \)，HR，MAP，\(\dot{V}_E \)およびP_{ET}CO_2には，それぞれ有意な主効果が認められた（\(P < 0.05 \)，表1）．運動時の \(\dot{V}_O_2 \)，HR，MAP，\(\dot{V}_E \)およびCOは，運動強度の上昇に伴って徐々に増加した．一方，P_{ET}CO_2は，安静時から中強度運動までは有意に増加したが，高強度運動では中強度運動と比較して有意に低値を示した（49.4±0.9 mmHg VS. 46.4±0.7 mmHg, P < 0.05）．

<table>
<thead>
<tr>
<th></th>
<th>安静</th>
<th>低強度</th>
<th>中強度</th>
<th>高強度</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\dot{V}_O_2) ml・kg⁻¹・min⁻¹</td>
<td>4.2 ± 0.1</td>
<td>16.9 ± 1.1</td>
<td>25.9 ± 1.5</td>
<td>36.3 ± 1.7</td>
</tr>
<tr>
<td>HR bpm</td>
<td>73.5 ± 2.9</td>
<td>106.4 ± 2.9</td>
<td>136.9 ± 3.1</td>
<td>164.1 ± 3.9</td>
</tr>
<tr>
<td>MAP mmHg</td>
<td>86.2 ± 2.6</td>
<td>103.0 ± 3.1</td>
<td>115.2 ± 4.3</td>
<td>128.5 ± 4.1</td>
</tr>
<tr>
<td>CO %</td>
<td>100.0 ± 0.0</td>
<td>176.3 ± 7.0</td>
<td>230.0 ± 11.4</td>
<td>270.3 ± 18.5</td>
</tr>
<tr>
<td>P_{ET}CO_2 mmHg</td>
<td>35.7 ± 1.3</td>
<td>46.2 ± 1.1</td>
<td>49.4 ± 0.9</td>
<td>46.4 ± 0.7</td>
</tr>
<tr>
<td>(\dot{V}_E) ml・min⁻¹</td>
<td>7.4 ± 0.5</td>
<td>22.1 ± 2.1</td>
<td>35.5 ± 3.0</td>
<td>57.8 ± 3.6</td>
</tr>
</tbody>
</table>

値は，平均値±標準誤差．\(\dot{V}_O_2 \)，酸素摂取量；HR，心拍数；MAP，平均動脈血圧；CO，心拍出量；P_{ET}CO_2，呼気終末二酸化炭素分圧；\(\dot{V}_E \)，換気量．** P < 0.01；安静時と有意な差有，## P < 0.01, # P < 0.05；直前の運動強度と有意な差有．

図3には，安静時および運動時のMCA V_{mean}を示した．一元配置分散分析の結果，MCA V_{mean}には有意な主効果が認められた（\(P < 0.01 \）．安静時の MCA V_{mean}は，51±3 cm/secであった．運動時のMCA V_{mean}は，低強度運動で68±5 cm/sec，中強度運動で72±5 cm/secおよび高強度運動で67±5 cm/secであり，運動強度の上昇に伴って徐々に増加したが，中強度運動にてレベリングオフとなった．
第2章 研究課題1: 運動時の前額部脳酸素化動態と脳血流応答の関係性

図3. 安静時および運動時の中大脳動脈血流速度(MCA Vmean)

値は、平均値±標準誤差。** P < 0.01: 安静時と有意な差有

安静時からのΔO₂Hb、ΔHHbおよびΔtHbには、それぞれ有意な主効果が認められた (P < 0.01)。低強度運動のΔO₂Hbは、安静時と比較して有意な差は認められなかった (−27±18 mM*cm, P = 0.910, 図4A)。一方、中強度運動および高強度運動のΔO₂Hbは、安静時と比較して有意に高値を示した (中強度, +126±30 mM*cm, P < 0.05; 高強度, +270±51 mM*cm, P < 0.01)。また、高強度運動のΔO₂Hbは、低強度運動および中強度運動と比較して有意に高値を示した (P < 0.05)。

低強度運動および中強度運動におけるΔHHbは、安静時と比較して有意な差は認められなかった (低強度, −6±7 mM*cm, P = 1.000; 高強度, −22±9 mM*cm, P = 0.175, 図4B)。しかしながら、高強度運動のΔHHbは、中強度運動と比較して増加傾向が見られた (+43±21 mM*cm, P = 0.058)。

ΔtO₂Hbは、ΔO₂Hbと同様の変化を示した。低強度運動および中強度運動のΔtO₂Hbは、安静時と比較して有意な差は認められなかった (低強度, −33±21 mM*cm, P = 0.937; 中強度, +103±32 mM*cm, P = 0.061, 図4C)。また、高強度運動のΔtO₂Hb (+313±62 mM*cm) は、安静時、低強度運動および中強度運動と比較して有意に高値を示した (P < 0.05)。
第2章 研究課題1：運動時の前額部脳酸素化動態と脳血流応答の関係性

図4. 安静時からの酸素化ヘモグロビン（ΔO₂Hb）、脱酸素化ヘモグロビン（ΔHHb）および総ヘモグロビン（ΔtHb）濃度変化

値は、平均値±標準誤差。**P < 0.01，*P < 0.05；安静時と有意な差有，##P < 0.01，
P < 0.05；低強度運動と有意な差有，✝P < 0.05；中強度運動と有意な差有。
第2章 研究課題1：運動時の前額部脳酸素化動態と脳血流応答の関係性

TOI には、運動強度の増加による変化は認められなかった（安静、70±1%：低強度、70±1%：中強度、71±1%：高強度、70±1%：P = 0.557、図5）。

SkBF は、一元配置分散分析の結果、有意な主効果が認められた（P < 0.01）。低強度運動における SkBF は、安静時と比較して有意な差は認められなかった（+107±5%, P = 1.000、図6）。一方、中強度運動および高強度運動における SkBF は、安静時と比較して有意に高値を示した（中強度、+192±17%, P < 0.01；高強度、+390±60%, P < 0.01）。また、中強度運動および高強度運動における SkBF は、低強度運動と比較しても有意に高値を示した（P < 0.001）。
第2章 研究課題1: 運動時の前額部脳酸素化動態と脳血流応答の関係性

図6. 安静時および運動時の皮膚血流量（SkBF）

値は、平均値±標準誤差. ** P < 0.01; 安静時と有意な差有, ## P < 0.01; 低強度運動と有意な差有.

ΔO₂Hb と MCA \(V_{\text{mean}} \) との間に有意な関係性は認められなかった (r = 0.191, P = 0.238, 図7). 同様に ΔO₂Hb と TOI との間に有意な関係性は見られなかった (r = 0.217, P = 0.179). 一方, ΔO₂Hb と SkBF との間には有意な正の相関関係が認められた (r = 0.573, P < 0.01, 図8). さらに, 重回帰分析の結果, ΔO₂Hb は, MCA \(V_{\text{mean}} \) との間に関係性は見られなかったが (P = 0.316), SkBF との間には有意な相関関係が観察された (P < 0.01).
第2章 研究課題1：運動時の前額部脳酸素化動態と脳血流応答の関係性

図7. 酸素化ヘモグロビン濃度変化（$\Delta O_2 Hb$）と中大脳動脈血流速度（MCA Vmean）
(A) および組織酸素飽和度（TOI）(B) との関係

図8. 酸素化ヘモグロビン濃度変化（$\Delta O_2 Hb$）と皮膚血流量（SkBF）との関係
第 2 章 研究課題 1：運動時の前額部脳酸素化動態と脳血流応答の関係性

2.4 考察

本研究課題では、運動強度に伴い増加する NIRS 信号のΔO2Hb は、脳血流量の変化に一致せず、SkBF の変化に強く依存することが明らかとなった。この結果は、NIRS 信号は、運動など皮膚血流量が増加する条件下では、実際の脳酸素化動態および脳神経活動を正確に反映しておらず、これらの条件下における NIRS による脳酸素化動態の同定は有用でないことが証明された。

脳神経活動は、その活動に比例して局所の酸素代謝が亢進する。この時、代謝変化に伴い血管は拡張することにより局所の脳血流量は増加する。Hoshi et al.(2001) は、脳血流量の増加により NIRS 信号のΔO2Hb は増加し、ΔHHb は低下することを報告している。さらに、脳血流量の低下は、NIRS 信号のΔO2Hb は低下させるが、ΔHHb には変化が見られていない。この結果は、脳神経活動部位には、脳組織が必要とする以上の動脈血流が送り込まれることに関係している (Fox & Raichle, 1986)。同様に運動時においても、NIRS 信号のΔO2Hb 増加は、脳代謝および脳神経活動の亢進と関係することが指摘されている (Secher et al., 2008; Ogh & Ainslie, 2009)。実際に、運動中のΔO2Hb は、脳神経活動の亢進時に見られる様に、運動強度の増加に伴って徐々に増加するのに対し、ΔHHb は高強度運動時のみに増加することが報告されている (Ide et al., 1999; Bhambhani et al., 2007; Marshall et al., 2008; Subudhi et al., 2008; Peltonen et al., 2009; Subudhi et al., 2009)。これらの知見から、運動による NIRS 信号のΔO2Hb の増加が、運動に伴う脳神経活動の亢進を示していると考えられてきた。しかしながら、近年の様々な報告から、この考え方には多くの論議の余地がある。

認知課題遂行時もしくは中強度運動時による脳神経活動の亢進は、NIRS 信号と MCA Vmean の間に関係性があることが示されている (Smielewski et al., 1995; Hirth et al., 1997; Ide et al., 1999)。一方、高強度運動時のΔO2Hb と MCA Vmean の間に関係性は確認されていない。低強度から中強度までの運動における MCA Vmean は、運動強度に依存して増加するが、その後はレベリングオフとなり、高強度運動時では安静時の値まで減少することが報告されている (Hellstrom et al., 1996; Sato & Sadamoto, 2010; Sato et al., 2011)。このことから、本...
第2章 研究課題1：運動時の前額部脳酸素化動態と脳血流応答の関係性

研究課題においても同様であり、MCA V_{mean} は高強度運動時では中強度運動時との値に差異は認められなかった。本研究における重要な知見は、先行研究の指摘と異なり、運動強度の増加によるΔO_2Hb と MCA V_{mean} の間には、単相関分析および重回帰分析の結果ともに有意な関係性は認められなかったことである。この先行研究との相違は、本研究では高強度運動時のデータを含めて解析したためと考えられる。いずれにしても、本研究の結果から、NIRS により測定したΔO_2Hb は、脳血流応答と一致せず、NIRS 測定が運動中の脳酸素化動態や脳血流量の指標として有用でないことが明らかとなった。

NIRS 測定による脳酸素化動態が脳血流応答と一致しない理由としては、NIRS 信号が増加した SkBF を強く反映したことが考えられる。NIRS 測定では、皮膚表面に測定用プローブを直接貼付し、近赤外光を照射する。そして、皮膚表面から照射された近赤外光は、皮膚などの様々な組織を伝播しながら大脳皮質まで到達し、その一部が再び皮膚表面まで戻ってくる。したがって、NIRS 信号が、光の伝播経路である皮膚組織の血流増加を反映していたことは十分に考えられる。NIRS を用いて筋の酸素化動態を測定した Buono et al. (2005) は、SkBF の変化を伴う昇圧剤（エビネフリン）の投与もしくは暑熱負荷などの条件下において、NIRS より測定した筋酸素化動態は、実際の筋酸素化動態を正確に反映しないことを指摘している。また、全身の暑熱負荷により SKBF が増加した条件下における NIRS 測定は、SkBF の応答と類似することも報告されている (Davis et al., 2006)。さらに、最近の先行研究によると、NIRS により測定した脳酸素化動態は、頭部の SkBF 変化の影響を受けることが示された (Germon et al., 1998; Takahashi et al., 2011)。高強度運動時には、体温調節のために顔面に血液を供給している外頸動脈血流量は増加する (Sato et al., 2011)。本研究課題においても、SkBF は、中強度から高強度運動中に増加した。この SkBF の増加は、NIRS 信号のΔO_2Hb と類似した結果であった。また、ΔO_2Hb と SkBF の間には、単相関分析および重回帰分析とともに有意な相関関係が認められた。このことは、NIRS 信号のΔO_2Hb は、脳血流応答よりも SkBF をより強く反映していることを示す。これらのことから、本研究課題のように高強度運動時などの SkBF が増加する条件下における NIRS 信号は、SkBF の影響を強く反映し、実際の脳酸素化動態を正確に反映していないことが明らかとなった。
2.5 まとめ

本研究課題では、脳神経活動の亢進およびSkFBの増加が生じる多段階動的運動中において、NIRSによる前額部脳酸素化動態が脳血流応答を反映するか否かを検討した。その結果、NIRS信号は、SkBFの影響を強く受け、実際の脳酸素化動態を反映していないことが明らかとなった。本研究では、運動条件であるため体循環動態の変化も大きく、脳循環に影響を及ぼす(Ogoh & Ainslie, 2009)。また、高強度運動時の脳血流量は低下するが、酸素、乳酸およびグルコースの摂取率を上昇させることにより脳代謝や脳神経活動は維持されている(Secher et al., 2008)。つまり、運動条件下では脳の代謝も大きく変化しておりNIRS信号に影響していることが考えられ、単純にSkBFの変化だけでは説明できない。研究課題1では、NIRS信号はSkBFの影響を強く受けることが明らかになったが、このSkBFの影響を取り除く分析方法を確立することが、NIRSにより正確な脳酸素化動態を同定する上で重要となる。そのためには、NIRS信号に含まれるSkBFの真の影響度を明らかにする必要がある。そこで研究課題2では、脳酸素化動態および脳血流量の変化が伴わない条件においてNIRS信号に含まれるSkBFの影響を検証した。
第 3 章
研究課題 2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

3.1 はじめに

研究課題 1 では、動的運動中に近赤外分光法（NIRS）により測定した前額部脳酸素化動態が、脳血流応答を反映するか否かを検討した。その結果、運動中のNIRS信号は、皮膚血流量（SkBF）の変化を強く反映しており、実際の前額部脳酸素化動態を正確に反映していないことが明らかとなった。つまり、NIRS測定は、運動などでSkBFが変化する条件下では前額部脳酸素化動態の同定に有用ではないことが証明された。

研究課題 1 の結果から、運動などで SkBF が変化する条件下において、NIRS 測定により正確な前額部脳酸素化動態を同定するには、NIRS 信号から SkBF の影響を除去することが必要不可欠となることが示された。そのためには、NIRS 信号に含まれる SkBF の真の影響度を明らかがることが必要となる。しかしながら、研究課題 1 では、運動中の NIRS 信号に SkBF の変化が大きく影響することを明らかにしたが、運動に伴い血圧および心拍出量の増加など体循環動態が大きく変化している。このような条件下では、生理要因が脳循環に影響を及ぼすため(Ogoh & Ainslie, 2009)，SkBF の NIRS 信号に及ぼす正確な影響度は研究課題 1 の方法では算出できなかった。そこで研究課題 2 では、我々が新しく開発した方法を用いて、循環動態および脳神経活動の変化を伴うことなく SkBF を操作し、NIRS 信号に含まれる SkBF の真の影響度を明らかにすることを目的とし実験を行った。

一方、NIRS 信号は、送光部－受光部間距離の長さの違いにより、光路長が異なることから、深さの異なる信号を取得することができる。この考え方に基づいて、送光部－受光部間距離の長さの異なる複数のプローブを用いて深さの異なる信号を測定し、異なるプローブ間距離の NIRS 信号を差分することから NIRS 信号に含まれる SkBF の影響を除去する方法が提案されている(Franceschini et al., 1998; Toronov et al., 2001; Saager & Berger, 2005; Luu & Chau, 2009; Gagnon et al., 2011; Saager et al., 2011)。しかしながら、NIRS 信号に含まれる SkBF の影響を除去する方法が提案されている。
第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

れる大脳皮質および頭蓋外血流量の寄与率が不明なこと、さらに、光路長の実測が困難なことから、NIRS信号のプローブ間距離の違いによる反応差からSkBFの影響を十分に除去できるか否かは明らかではない。

そこで研究課題2では、1）NIRS信号に含まれるSkBFの真の影響度を明らかにすることに加え、2）この寄与率がプローブの送光部-受光部間距離によりどの様に影響するのかについても検討を加えた。研究課題2において、SkBFのみを変化させる方法で明らかにするこれらの知見は、NIRS信号により前額部脳酸素化動態を同定する方法を確立する上で重要な情報となることが期待される。
3.2 実験方法

A. 被験者

被験者は、健康な男子大学生7名とした。被験者の平均年齢は、21±1歳であった。それぞれの被験者には、事前に実験の目的、内容および危険性について十分に説明を行い、同意が得られた者のみ、同意書に署名および捺印後、実験に参加した。また、本研究課題は、ヘルシンキ宣言に基づき計画し、東洋大学生命科学部・総合情報学部・理工学部のヒトおよびヒト由来物質を対象とした研究に関する倫理委員会の承認を得て実施した（IRB #2012-R-01）。

全ての被験者は、非喫煙者とし、心血管系および呼吸器系に疾患が無く、薬剤を常時していない者とした。実験開始12時間前からカフェインおよびアルコールの摂取を制限した。また、全ての被験者は、事前に実験装置および手順に慣れるために練習を行ってから、本実験を実施した。

B. 実験プロトコール

被験者は、リクライニング式椅子の上に半仰臥位姿勢にて安静後、ハンドメイドのヘッドカフ圧刺激装置を前額部（図9・10）に装着した。ヘッドカフは、止血用カフ、ペットボトルのキャップおよび自動加圧計（Hokanson, USA）から成り、外頸動脈から分岐し前額部へ血液を供給している左浅側頭動脈のみの血流を一定の圧を掛けて制限できるように作成した。ヘッドカフ装着時、ペットボトルのキャップが被験者の左浅側頭動脈に当たるようにバンドにより固定した。

![図9. ハンドメイドのヘッドカフ圧刺激装置](image)

左浅側頭動脈の血流のみ
を制限するためのペットボトルキャップ
止血用カフ
第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

2分間の安静値測定後、自動加圧計を用いて+20 mmHg、+40 mmHg、+60 mmHgおよび+80 mmHgと段階的にヘッドカフへの圧刺激を30秒間ずつ行い機械的に前額部SkBFを変化させた。それぞれの圧刺激の試行間は、30秒間の安静とした。

C. 測定項目

①前額部脳酸素化動態

前額部脳酸素化動態は、NIRS（ETG-7100 Optical Topography System; Hitachi Medical Co., Tokyo, Japan）により、酸素化ヘモグロビン（ΔO₂Hb）および脱酸素化ヘモグロビン濃度変化（ΔHHb）を連続的に測定した。ΔO₂HbおよびΔHHbは、695 nmおよび830 nmの2波長を用いて測定を行い、修正Lambert-Beer法を用いて算出した（Delphy et al., 1988; Maki et al., 1995）。測定には1つの光源および3つの検出器用プローブを直線状に並べ、送光部－受光部間距離は15 mm、22.5 mmおよび30 mmとした（図10左上）。NIRSプローブは、被験者の左前額部にゴム製のプローブホルダーおよびゴムバンドを用いて固定した。また、プローブ間距離15 mmおよび22.5 mmでは、光を減衰させるためにプローブホルダーと皮膚との接触面に、波長695 nmおよび830 nmにおいて透過率がそれぞれ6.8％および9.8％の光学フィルタ（黒フィルム）を1枚しくは2枚装
第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

着した。ΔO₂HbおよびΔHHbは、安静値からの変化量にて示した。

②前額部皮膚血流量
前額部皮膚血流量（SkBF）は、レーザードップラータ法（MoorLAB, Moor Instruments, Axminster, UK）を用いて測定した。測定は、NIRSプローブの左横に測定用プローブを両面テープにて貼付し、皮膚表面から1mmから2mm下の血流量を連続的に測定した。また、SkBFは、安静値からの変化量にて示した（ΔSkBF）。

③心拍数・平均動脈血圧
心拍数（HR）および平均動脈血圧（MAP）は、被験者の中指に圧脈波センサーを装着し、非観血的連続血圧測定装置（Finometer, Finapress Medical Systems BV, Netherlands）により一拍毎の連続血圧を測定し、その連続動脈圧波形よりHRおよびMAPを算出した。

D. データ収集および分析
ΔO₂HbおよびΔHHbは、10Hzにて記録し、ETG-7100を用いて解析を行った。HR、MAPおよびΔSkBFは、1kHzにてアナログ-デジタル変換装置（PowerLab; ADInstruments, Milford, MA, USA）を介してパーソナルコンピューターに取り込み記録した。

E. 統計処理
結果は、全て平均値±標準偏差にて表記した。安静値および30秒間のヘッドカフ圧刺激時のΔO₂Hb、ΔHHb、ΔSkBF、HRおよびMAPは、対応のある一元配置分散分析を行い、有意差が認められた場合にはTukey検定を用いて多重比較を行った（SPSS 20, IBM, Tokyo, Japan）。送光部-受光部間距離の違いがΔO₂HbおよびΔHHbへ及ぼす影響は、対応のある二元配置分散分析を用いた。また、ΔO₂HbおよびΔSkBFの関係性を明らかにするために、個人値をそれぞれプロットし、直線回帰分析を行った。なお、有意水準は全て5%未満とした。
第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

3.3 結果

一元配置分散分析の結果、安静値および段階的なヘッドカフ圧刺激によるHRおよびMAPには、それぞれ有意な主効果は認められなかった（HR, P = 0.467；MAP, P = 0.124）。

図11には、段階的なヘッドカフ圧刺激によるΔSkBF, ΔO₂HbおよびΔHHbの代表的な応答を示した。ヘッドカフ圧刺激の開始によりΔSkBFおよびΔO₂Hbは素早く変化し、圧刺激を止めると素早く刺激前に戻った。また、圧刺激が強くなるに連れてΔSkBFおよびΔO₂Hbの低下は大きくなったが、ΔHHbに変化は見られなかった。

<table>
<thead>
<tr>
<th></th>
<th>安静</th>
<th>+20mmHg</th>
<th>+40mmHg</th>
<th>+60mmHg</th>
<th>+80mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR bpm</td>
<td>61.4 ± 10.5</td>
<td>59.2 ± 9.6</td>
<td>59.0 ± 10.5</td>
<td>59.7 ± 10.1</td>
<td>58.6 ± 10.2</td>
</tr>
<tr>
<td>MAP mmHg</td>
<td>87.6 ± 8.2</td>
<td>87.3 ± 7.4</td>
<td>90.3 ± 7.1</td>
<td>89.0 ± 9.1</td>
<td>89.5 ± 8.9</td>
</tr>
</tbody>
</table>

値は、平均値±標準偏差。HR, 心拍数；MAP, 平均動脈血圧。
第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

段階的なヘッドカフ圧刺激に伴うΔSkBFは、一元配置分散分析の結果、有意な主効果が認められた（P < 0.01）。ヘッドカフ圧+20 mmHg および+40 mmHg のΔSkBF は、静置値と比較して有意な差は見られなかったが、+60 mmHg および+80 mmHg では有意に低下した（+20 mmHg, -25 ± 28 AU, P = 0.943; +40 mmHg, -48 ± 38 AU, P = 0.607; +60 mmHg, -131 ± 66 AU, P < 0.01; +80 mmHg, -212 ± 125 AU, P < 0.01, 図12）。また、ヘッドカフ圧+60 mmHg は+20 mmHg と比較して有意に低下し（P < 0.05）、+80 mmHg は+20 mmHg および+40 mmHg と比較しても有意に低下した（+20 mmHg, P < 0.01; +40 mmHg, P < 0.001）。

図11. 被験者1名の段階的なヘッドカフ圧刺激による皮膚血流量（ΔSkBF）、酸素化ヘモグロビン濃度（ΔO₂Hb）および脱酸素化ヘモグロビン濃度（ΔHHb）変化

- 26 -
第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

段階的なヘッドカフ圧刺激によるΔSkBF

図12. 段階的なヘッドカフ圧刺激による皮膚血流量変化（ΔSkBF）

値は、平均値±標準偏差。* P < 0.01；安静値有意差有，** P < 0.01, * P < 0.05；+20 mmHg
と有意な差有，*** P < 0.01；+40 mmHg と有意な差有。

段階的なヘッドカフ圧刺激によるΔO2Hb およびΔHHb は、一元配置分散分析の結果、受光部－受光部間距離15 mm, 22.5 mm および 30 mm におけるΔO2Hb にはそれぞれ有意な主効果が認められた（P < 0.01）。一方、送光部－受光部間距離15 mm, 22.5 mm および 30 mm におけるΔHHb には有意な主効果は認められなかった（15 mm, P = 0.068; 22.5 mm, P = 0.800; 30 mm, P = 0.752）。また、二元配置分散分析の結果、送光部－受光部間距離の違い（15 mm, 22.5 mm および 30 mm）によるΔO2Hb およびΔHHb には、有意な交互作用は認められなかった（ΔO2Hb, P = 0.882; ΔHHb, P = 0.391）。

送光部－受光部間距離15 mm における、ヘッドカフ圧+20 mmHg および+40 mmHg のΔO2Hb は安静値と比較して差は見られなかったが、+60 mmHg および+80 mmHg では有意に低下した（+20 mmHg, -0.16 ± 0.16 mM・mm, P = 0.354; +40 mmHg, -0.17 ± 0.18 mM・mm, P = 0.302; +60 mmHg, -0.45 ± 0.22 mM・mm, P < 0.01; +80 mmHg, -0.72 ± 0.37 mM・mm, P < 0.01, 図13）。また、送光部－受光部間距離15 mm におけるΔO2Hb は、ヘッドカフ圧+60 mmHg で+20 mmHg と比較して有
第3章 研究課題2: 定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

意に低下し（P < 0.05），+80 mmHg は+20 mmHg，+40 mmHg および+60 mmHg と比較して有意に低下した（+20 mmHg，P < 0.01；+40 mmHg，P < 0.001；+60 mmHg，P < 0.05）。

送光部－受光部間距離 22.5 mm における，ヘッドカフ圧+20 mmHg および+40 mmHg の Δ O_2Hb は静脈値から変化は見られなかったが，+60 mmHg および+80 mmHg では有意に低下した（+20 mmHg，-0.21 ± 0.12 mM・mm，P = 0.398；+40 mmHg，-0.23 ± 0.21 mM・mm，P = 0.305；+60 mmHg，-0.58 ± 0.33 mM・mm，P < 0.01；+80 mmHg，-0.89 ± 0.45 mM・mm，P < 0.01）。また，送光部－受光部間距離 22.5 mm における Δ O_2Hb は，+60 mmHg で+20 mmHg と比較して有意に低下し（P < 0.05），+80 mmHg は+20 mmHg および+40 mmHg と比較して有意に低下した（+20 mmHg，P < 0.01；+40 mmHg，P < 0.001）。

一方，HHb は，送光部－受光部間距離 15 mm，22.5 mm および 30 mm における，ヘッドカフ圧+20 mmHg から+80 mmHg による変化は，静脈値および全てのヘッドカフ圧刺激時において差は見られなかった（図 13）。

- 28 -
第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

図13。段階的なヘッドカフ圧刺激による酸素化ヘモグロビン（ΔO₂Hb）および脱酸素化ヘモグロビン濃度（ΔHHb）変化

カフ圧（mmHg）

\[\Delta O_2 Hb (\text{mM} \cdot \text{mm})\]

\[\Delta Hb (\text{mM} \cdot \text{mm})\]

図13。段階的なヘッドカフ圧刺激による酸素化ヘモグロビン（ΔO₂Hb）および脱酸素化ヘモグロビン濃度（ΔHHb）変化

値は、平均値±標準偏差。* P < 0.01; 安静値と有意な差有，** P < 0.01，* P < 0.05:
+20 mmHg と有意な差有，*** P < 0.01，* P < 0.05；+40 mmHg と有意な差有，**P < 0.01:
+60 mmHg と有意な差有。

ΔO₂Hb とΔSkBF との間には、送光部－受光部間距離15 mm、22.5 mmおよび30 mmにおいてそれぞれ有意な正の相関関係が認められた（15 mm, r = 0.465, P = 0.013; 22.5 mm, r = 0.733, P < 0.001; 30 mm, r = 0.734, P < 0.001, 図14）。しかしながら、送光部－受光部間距離の長さの違い（15 mm、22.5 mmおよび30 mm）による、回帰直線の傾きに差は認められなかった（P = 0.789）。
第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

図14. 送光部－受光部間距離15 mm, 22.5 mmおよび30 mmにおける酸素化ヘモグロビン濃度変化（ΔO_2Hb）と膚血流量変化（$\Delta SkBF$）との相関関係

$\Delta O_2Hb = 0.0015 \times \Delta SkBF - 0.216$
$r = 0.465, P = 0.013$

$\Delta O_2Hb = 0.0029 \times \Delta SkBF - 0.180$
$r = 0.733, P < 0.001$

$\Delta O_2Hb = 0.003 \times \Delta SkBF - 0.137$
$r = 0.734, P < 0.001$
第3章 研究課題2: 定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

ヘッドカフ圧+80mmHg時の送光部-受光部間距離15mmおよび30mmにおける酸素化ヘモグロビン濃度変化（ΔO$_2$Hb）

ヘッドカフ圧+80mmHg時の送光部-受光部間距離15mmおよび30mmにおけるΔO$_2$Hbは、被験者ごとにヘッドカフ圧刺激に対する応答にはばらつきが見られた（図15）。また、このことはヘッドカフ圧+20mmHg、+40mmHgおよび+60mmHgにおいても同様であった。
第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

3.4考察

研究課題2では、ヘッドカフ圧刺激による機械的な浅側頭動脈の血流制限により、体循環動態の変化を伴わずSkBFを独立して、また段階的に減少させることに成功した。この方法により、SkBFの減少とSkO₂Hbの変化に有意な正の相関関係があることが明らかとなった。この結果は、SkBFが変化してもSkO₂Hbに対するSkBFの寄与率は影響を受けないことである。つまり、SkBF変化によるSkO₂Hbへの寄与率も相関係数から算出することができる。一方、送光部-受光部間距離の違いは、このSkO₂Hb変化に対するSkBFの影響度を変化させなかった。この原因としては、送光部-受光部間距離の長さに依存するSkBFの影響が各被験者により大きさばらつくためであることが本研究課題で明らかとなった。従来の送光部-受光部間距離の長さの違うNIRS信号の差分法では、SkBFのSkO₂Hb変化の影響度がどの測定対象者に対しても一律であることを前提に算出している。したがって、これらの結果は、従来の方法ではSkBFの影響をNIRS信号から取り除けないことを示唆するものである。

先行研究および研究課題1のように昇圧剤の投与や運動などの測定条件では、循環動態の変化がNIRS信号に影響を及ぼす可能性も考えられ、NIRS信号に含まれる真のSkBFの影響度を定量的に同定することは困難である。そこで、研究課題2では、体循環動態の変化を伴わずに、SkBFのみを変化させることができる測定方法を考案した。この方法は、ハンドメイドのヘッドカフ圧刺激装置を用いた加圧負荷により、前額部へ血液を供給している浅側頭動脈の血流のみを制限し、機械的および定量的に前額部のSkBFを操作できるものである。この機械的なSkBF変化時のNIRS応答を検討することにより、NIRS信号に含まれるSkBFの影響を被験者ごとに定量化することが可能となった。また、浅側頭動脈への圧刺激により、HRおよびMAPに変化は伴わずSkBFが変化していることから、この方法が体循環動態と独立して前額部SkBFのみを機械的に変化させることを確認した。NIRSにより測定したSkO₂Hbは、SkBFと同じにヘッドカフ圧+20 mmHgおよび+40 mmHgにおいて変化は見られなかったが、ヘッドカフ圧+60 mmHgおよび+80 mmHgでは有意に低下した。また、SkO₂HbとSkBFとの間に有意な正の相関関係が認められた。

Davie & Grocott（2012）は、近赤外光を用いた医療用の脳酸飽和度測定装置
第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

であるINVOS（Covidien; Boulder, CO）、FORE-SIGHT（CAS Medical Systems Inc; Brandford, CT）およびEQUANOX（Nonin Medical Inc; Plymouth, MN）を用いて前額部脳酸素素飽和度を測定した際、ヘッドバンドによる頭皮の血流制限を行うと、どの装置で測定した前額部脳酸素素飽和度も有意に低下することを報告した。この結果は、前額部脳酸素素飽和度が明らかに頭蓋外血流変化の影響を受けることを示唆している。逆に、Germon et al. (1999) は、同様に頭皮の血流制限を行った際、NIRS信号は、頭蓋外血流量変化の影響を受けないことを指摘している。これら先行研究における見解の不一致の原因については明らかでないが、一つの考えられる要因としては血流制限の方法が挙げられる。先行研究における頭皮の血流制限は、頭部に止血用カフを巻くことで血流制限を行っており、動脈および静脈の両血管を止血している可能性が考えられる。つまり、動脈側は止血、静脈側は血流が貯留しており、ΔO_2HbおよびΔHHb測定における動静脈血流量の変化が影響していることが考えられる。本研究課題は、先行研究とは異なり、浅側頭動脈へのヘッドカフ圧刺激により機械的に前額部の動脈側のSkBFのみを変化させることから、静脈貯留の影響を受けない。さらに、2つの異なる波長（695 nmおよび830 nm）からΔO_2HbおよびΔHHbを直接測定しているため、酸素飽和度同定のためのアルゴリズムを含まない。以上のことから、NIRS信号に含まれるSkBFの真の影響度を正確に同定することができたと考えられる。

先行研究において、送光部-受光部間距離の違いにより、NIRS信号の光路長は変化することが指摘されている(Germon et al., 1999; Umeyama & Yamada, 2009; Yamada et al., 2009)。そのため送光部-受光部間距離の長さの違いにより、深さの異なる部位を通じて（反映する）信号が取得できると考えられている。実際、医療用測定機器として用いられている、INVOS, FORE-SIGHTおよびEQUANOXでは、送光部-受光部間距離の異なるプローブから得られた光路長の違いNIRS信号を利用して、頭蓋外血流量の影響を減少させる方法が採用されている。また、送光部-受光部間距離の違いがNIRS信号に及ぼす影響については、ヒトの脳モデルシミュレーションから検討されている(Yamada et al., 2009; Funane et al., 2014)。しかしながら、本研究課題において、ΔO_2Hbに対するSkBFの影響度は、送光部-受光部間距離15 mm, 22.5 mmおよび30 mmによる有意な差異は観察されなかった。この結果は、送光部-受光部間距離の
第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

違いの影響が被験者により大きく異なることを示す（図15）。これは、被験者ごとに解剖学的および生理学的に前額部の循環構造が大きく異なることに依存していると考えられる。従来の方法では、全ての測定対象者に対して一律の補正係数を用いてNIRS信号を単純差分することからSkBFの影響を除去する試みがなされている。しかしながら、本研究課題の結果から、この従来の方法では、測定対象者全てに対してNIRS信号に含まれるSkBFの影響を除去できないことが明らかとなった。Germon et al.（1999）は、送光部－受光部間距離が7mmから55mmの間では、送光部－受光部間距離が長いほど頭蓋外血流量変化に対する感受性は低くなり、逆に、脳酸素化動態に対する感受性は高くなることを報告している。一方、本研究課題では、SkBF変化によるΔO₂Hbへの影響は、送光部－受光部間距離の違いにより差異は観察されず、この感受性の変化の影響は認められなかった。また、Germon et al.（1999）は、NIRS測定において頭蓋外血流量変化の影響を少なくし、脳酸素化動態の変化に対する感受性を高めるには、送光部－受光部間距離を少なく、ともに48mmにある必要があると報告している。しかしながら、Germon et al.（1999）は、ヘッドバンドを用いて頭部を血流制限しており、静脈血貯留の影響を含む結果から推察しているため、本研究課題の結果と異なった可能性が高い。実際に、送光部－受光部間距離30mm以上では、NIRS信号に含まれるSkBFの影響は小さくなるが、同時に、光路長が長くなり受光部に到達する信号も減少する。そのため、最適な送光部－受光部間距離は30mmと考えられている（McCormick et al., 1992; Maki et al., 1995）。

また、Funane et al.（2014）は、典型的なヒト頭部モデルを用いたモンテカルロ法による光伝播シミュレーションにより、送光部－受光部間距離の増加に伴い灰白質の光路長は直線的に増加するのに対し、皮膚層の光路長はプローブ間距離の違いによる差異は認められないことを報告している（26.5mmから34.5mm）。

本研究課題では、ΔHHbはSkBF変化に影響しないことも示された。Kirilina et al.（2012）は、機能的磁気共鳴画像（fMRI）を用いて測定した頭蓋外信号は、ΔO₂Hbと強い相関関係が認められたが、ΔHHbとは有意な関係性は見られないとの報告している。しかしながら、なぜ、ΔHHbがSkBFの影響を受けないのかは、本研究課題の結果から明らかにすることはできなかった。
第3章 研究課題2：定量的な皮膚血流量変化が前額部脳酸素化動態に及ぼす影響

3.5 まとめ

本研究課題は、NIRS信号に含まれる真のSkBFの影響度を同定した。そこでは、体循環動態の変化を伴わずに、前額部SkBFのみを機械的に変化させるヘッドカフ圧刺激装置を作成し、前額部SkBF変化時のNIRS応答を測定した。また、送光部－受光部間距離の長さの違いが（15 mm, 22.5 mmおよび30 mm）NIRS信号に及ぼす影響についても検討を行った。その結果、ヘッドカフ圧刺激により、SkBFは減少し、それに伴ってΔO₂Hbも同様に低下し、両値間に有意な正の相関関係が認められた。しかしながら、NIRS信号に含まれるSkBFの影響は、送光部－受光部間距離（15 mm, 22.5 mmおよび30 mm）に差異は観察されなかった。このことは、送光部－受光部間距離の長さに依存するΔO₂Hbに対するSkBFの影響が、各被験者により解剖学および生理学的要因により大きく異なるためであると考えられた。以上の結果から、送光部－受光部間距離の異なるプローブから検出されたNIRS信号を用いて、ΔO₂Hbに含まれるSkBFの影響度がどの被験者に対しても一定であることを前提に算出している従来の方法（一律の補正係数を用いて単純差分する方法）では、NIRS信号に含まれるSkBFの影響を除去できないことが示唆された。したがって、NIRS信号に含まれるSkBFの影響を除去するためには、各測定対象者のNIRS信号に含まれるSkBFの影響を同定する新しい分析方法の開発が必要となる。
第４章

研究課題３：皮膚血流量を除去した前額部脳酸素化動態算出法の開発

4.1 はじめに

研究課題２では、体循環の変化を伴わずに前額部の皮膚血流量（SkBF）のみを機械的に変化させることのできるヘッドカフ圧刺激装置を作成することにより、近赤外分光法（NIRS）含まれるSkBFの真の影響度およびプローブの送光部－受光部間距離の違いが（15 mm, 22.5 mmおよび30 mm）、これらの影響度をどのように変化させるか調査した。その結果は予測と異なり、プローブの送光部－受光部間距離の違い、NIRS信号に対するSkBFの影響に有意な変化を及ぼさないことが明らかとなった。この結果は、各被験者間の値のばらつきが大きく影響しており、NIRS信号とSkBFの関連性が解剖学および生理学的差異に依存することを示唆している。したがって、SkBFの影響を除去し、正確な前額部脳酸素化動態をNIRS信号から測定するためには、各測定対象者により異なるNIRS信号の特性を脳酸素化動態を推定するためのアルゴリズムに含める必要がある。そこで、本研究課題３では、各測定者のNIRS信号に対するSkBFの影響度を同定し、この特性を考慮した算出式から脳酸素化動態を推定した。さらに、この算出法の妥当性を検証した。

NIRS信号に含まれるSkBFの影響を除去するための分析方法は、これまで数多く報告されている。先行研究では、送光部－受光部間距離が異なる複数のプローブを用いて深さの異なる信号を測定し、送光部－受光部間距離の異なるプローブから検出したNIRS信号を差分することにより、皮膚などの浅い層を反映している信号を除去する分析方法が提案されている（Franceschini et al., 1998; Toronov et al., 2001; Saager & Berger, 2005; Luu & Chau, 2009; Gagnon et al., 2011; Saager et al., 2011）。これらの先行研究では、NIRS信号に含まれるSkBFの影響度は、全ての測定対象者に対して同じであることを前提に分析を行っている。つまり、送光部－受光部間距離の異なるプローブから検出されたNIRS信号に含まれるSkBFの影響度の比率は一定で算出されている。しかしながら
第4章 研究課題3：皮膚血流量を除去した前額部脳酸素化動態算出法の開発

ら、研究課題2では、NIRS信号に含まれるSkBFの影響は、各測定対象者の解剖学および生理学的な差異により大きく異なることが証明された。この結果は、「NIRS信号に対するSkBFの影響度は測定対象者に依存しない」ことが前提であるこれまでの単純差分によるNIRS信号の分析方法では、SkBFの影響を受けない正確な前額部内酸素化動態を同定することが困難であることを示唆している。

近年、各測定対象者により異なるNIRS信号に含まれるSkBFの影響を考慮するために、信号分離法を用いた分析方法が考案されている。例えば、ある算出値に対して影響する可能性のあるいくつかの要因を独立的ではなく総合的に考慮する主成分分析(Zhang et al., 2005; Virtanen et al., 2009)，また多変量の信号を複数の成分に分離する独立成分分析(Akgul et al., 2006; Kohno et al., 2007; Katura et al., 2008; Markham et al., 2009; Patel et al., 2011)などの分析方法である。さらに、Funane et al. (2014)は、マルチディスタンス（複数の送光部－受光部間距離）プローブと独立成分分析を組み合わせた分析方法を提案している。残念ながら、これらの分析方法の確立はシュミレーションモデルにより行われており、実際のヒトにおける検証も十分に行われていない。つまり、各測定対象者の解剖学および生理学的差異を考慮したものではなく、あくまで数値の関係性により確立された方法である。さらに、各測定対象者に対してSkBFの影響を受けないNIRS信号が推定できるかについても明らかにされていない。

そこで、研究課題3では、研究課題2から得られた「NIRS信号に対するSkBFの影響度は、測定者対象者により大きく異なる」という知見を基本概念とし、各測定対象者により異なるSkBFの影響を考慮した前額部脳酸素化動態の推定法を考案した。そして、この新しい推定法の妥当性を検証するため、脳神経活動が亢進する静的握力発揮および認知課題中の2条件において前額部脳酸素化動態の推定値を算出し、SkBFの変化に対する推定値への影響を調査した。
4.2 実験方法

A. 分析方法の原理

本研究課題では、送光部-受光部間距離 15 mm および 30 mm の 2 つの測定用プローブを用いて測定を行った。送光部-受光部間距離 15 mm における NIRS 信号は主に皮膚層を反映し、30 mm における NIRS 信号は皮膚層および大脳皮質の両方を反映すると考えられる。そして、安静時にヘッドカフ圧刺激による SkBF 変化から、送光部-受光部間距離 15 mm および 30 mm における酸素化ヘモグロビン濃度変化 (ΔO₂Hb₁₅mm・ΔO₂Hb₃₀mm) を測定することにより、測定対象者ごとに NIRS 信号に含まれる SkBF の影響を同定した。本研究課題では、ヘッドカフ圧刺激による ΔO₂Hb は、全て SkBF 変化を反映した応答であると仮定した。つまり、ヘッドカフ圧刺激による ΔO₂Hb₃₀mm の応答は、頭盖内酸素化動態は一定であり、SkBF の影響のみを反映しているとした。そして、ΔO₂Hb₃₀mm における SkBF の影響を ΔO₂Hb₁₅mm から推定するための補正係数 (a₀) を以下の式から算出した。

ΔO₂Hb₃₀mm = a₀・ΔO₂Hb₁₅mm.

SkBF の影響を除去した ΔO₂Hb（ΔO₂HbEstimated）は、ΔO₂Hb₃₀mm から ΔO₂Hb₁₅mm にて同定した SkBF の影響（a₀・ΔO₂Hb₁₅mm）を差し引くことにより推定算出した。

ΔO₂HbEstimated = ΔO₂Hb₃₀mm - a₀・ΔO₂Hb₁₅mm.

B. 被験者

被験者は、健康な男子大学生 12 名とした。被験者の平均年齢は、21 ± 1 歳であった。それぞれの被験者には、事前に実験の目的、内容および危険性について十分に説明を行い、同意が得られた者のみ、同意書に署名および捺印後、実験に参加した。また、本研究課題は、ヘルシンキ宣言に基づき計画し、東洋大学生命科学部・総合情報学部・理工学部のヒトおよびヒト由来物質を対象とした研究に関する倫理委員会の承認を得て実施した（IRB#2012-R-01）。

全ての被験者は、非喫煙者とし、心血管系および呼吸器系に疾患が無く、薬剤を常時用していない者とした。実験開始 12 時間前からカフェインおよびアルコールの摂取を制限した。また、全ての被験者は、事前に実験装置および手順に慣れるために練習を行ってから、本実験を実施した。
第 4 章 研究課題 3：皮膚血流量を除去した前額部脳酸素化動態算出法の開発

C. 実験デザイン

①補正係数 \(a_0 \) の算出

研究課題 2 と同様に、被験者は、リクライニング式椅子の上に半仰臥位姿勢にて安静後、ハンドメイドのヘッドカフ圧刺激装置を前額部に装着した（図 9, 10）。ヘッドカフは、止血用カフ、ペットボトルのキャップおよび自動血圧計（Hokanson, USA）から成り、外頸動脈から分岐し前額部へ血液を供給している左浅側頭動脈のみの血流を一定の圧を掛けて制限できるように作成した。ヘッドカフ装着時、ペットボトルのキャップが被験者の左浅側頭動脈に当たるようにバンドにより固定した。

3 分間の安静後、ヘッドカフに自動加圧計を用いて+80 mmHg の圧刺激を 30 秒間ずつ 4 回行い、前額部 SkBF を機械的に変化させた。それぞれの圧刺激の試行間は、30 秒間の安静とした。

本研究課題では、ヘッドカフ圧刺激は、SkBF のみを変化させ、実際の脳酸素化動態は変化しないと仮定した。つまり、圧刺激による \(\Delta O_2 Hb \) は、全て SkBF 変化を反映した応答と考えられる。そして、ヘッドカフ圧刺激による \(\Delta O_2 Hb_{15mm} \) および \(\Delta O_2 Hb_{30mm} \) の応答から上述の式を用いて補正係数 \(a_0 \) を算出した。なお、補正係数 \(a_0 \) の算出には最小二乗法を用いた。

②妥当性の検証

作成した分析方法および算出した補正係数 \(a_0 \) の妥当性は、安静（コントロール条件）、脳神経活動が亢進する静的握力発揮および認知課題の 3 条件の実験において検証を行った（図 16）。
第4章 研究課題3：皮膚血流量を除去した前額部脳酸素化動態算出法の開発

コントロール条件は、240秒間の座位による安静とした。静的握力発揮は、180秒間の座位による安静後、左腕にて随意最大筋力の60％負荷による静的握力発揮を30秒間行い、その後、30秒間の回復期とした。発揮張力は、握力計をアナログ・デジタル変換装置（PowerLab; ADInstruments, Milford, MA, USA）と接続しパーソナルコンピューターを介して、被験者に視覚フィードバックを行うことにより一定張力を維持させた。

認知課題は、150秒間の座位による安静、30秒間の「あ・い・う・え・お」の繰り返し発生、30秒間の言語流暢性課題の実施および30秒間の「あ・い・う・え・お」の繰り返し発生から構成された。被験者には課題中、「あ」、「か」、「さ」および「な」のいずれか指定された頭文字の名詞を可能な限り多く発話するように教示した。

また、作成した分析方法および算出した補正係数（\(a_0\)）の妥当性は、各条件下ヘッドカフへ+80mmHgの圧刺激を5秒間入れることによる機械的なSkBF変化
時のNIRS応答から検証した（図16）。作成した分析方法が有効であれば、ヘッドカフ圧刺激によるSkBF変化時においても、$\Delta O_2Hb_{\text{Estimated}}$は変化しないと考えられる。

D. 測定項目

①前額部脳酸素化動態

前額部脳酸素化動態は、NIRS（ETG-7100 Optical Topography System; Hitachi Medical CO., Tokyo, Japan）により、ΔO_2Hbを連続的に測定した。ΔO_2Hbは、695nmおよび830nmの2波長を用いて測定を行い、修正Lambert-Beer法を用いて算出した（Delpy et al. 1988; Maki et al., 1995）。測定には、1つの光源および2つの検出器用プローブを直線状に並べ、送光部－受光部間距離は15mmおよび30mmとした。NIRSプローブは、被験者の左前額部位にゴム製のプローブホルダーおよびゴムバンドを用いて固定した。また、プローブ間距離15mmでは、光を減衰させるため、プローブホルダーと皮膚との接触面に波長695nmおよび830nmにおいて透過率がそれぞれ6.8％および9.8％の光学フィルタ（黒フィルム）を1枚もしくは2枚装着した。ΔO_2Hbは、安静値からの変化量にて示した。

②前額部皮膚血流量

前額部皮膚血流量（SkBF）は、レーザードップラー法（MoorLAB, Moor Instruments, Axminster, UK）を用いて測定した。測定は、NIRSプローブの左横に測定用プローブを両面テープにて貼付し、皮膚表面から1mmから2mm下の血流量を連続的計測した。SkBFは、安静値からの変化量にて示した（$\Delta SkBF$）。

③心拍数・平均動脈血圧

心拍数（HR）および平均動脈血圧（MAP）は、被験者の中指に圧脈波センサーを装着し、非観血的連続血圧測定装置（Finometer, Finapress Medical Systems BV, Netherlands）により一拍毎の連続血圧を測定し、その連続動脈波形よりHRおよびMAPを算出した。
第4章 研究課題3：皮膚血流量を除去した前額部脳酸素化動態算出法の開発

E. データ収集および分析

ΔO₂Hbは、10Hzにて記録し、ETG-7100を用いて解析を行った。HR、MAPおよびΔSkBFは、1kHzにてアナログデジタル変換装置（PowerLab; ADInstruments, Milford, MA, USA）を介してパーソナルコンピューターに取り込み記録した。

F. 統計処理

結果は、全て平均値±標準偏差にて表記した。安静値および30秒間ずつ4回のヘッドカフ刺激時のHR、MAP、ΔSkBFおよびΔO₂Hbは、対応のある一元配置分散分析を行い、有意差が認められた場合はTukey検定を用いて多重比較を行った（SPSS 20, IBM, Tokyo, Japan）。また、送光部－受光部間距離15mmおよび30mmにおけるΔO₂Hbは、対応のある二元配置分散分析用いて比較を行った。妥当性の検証実験における静的握力発揮および認知課題中のHR、MAP、ΔSkBFおよびΔO₂Hbは、対応のあるtテストを用いて安静値と各条件中を比較した。また、5秒間のヘッドバンド圧刺激による、ΔSkBFおよびΔO₂Hbは、対応のあるtテストを用いて安静値と比較した。なお、有意水準は全て5％未満とした。
4.3 結果

①補正係数（a_0）の算出

安静値および4回のヘッドカフ圧刺激によるHR, MAPは、一元配置分散分析の結果、主効果は認められなかった（HR, P = 0.861; MAP, P = 0.539, 表3）。一方、ΔSkBF, ΔO_2Hb_15mmおよびΔO_2Hb_30mmには、4回のヘッドカフ圧刺激による有意な主効果が認められ、安静値と比較して有意に低下した（P < 0.01）。また、4回のヘッドカフ圧刺激によるΔO_2Hb_15mmおよびΔO_2Hb_30mm間には、有意な交互作用は認められなかった（P = 0.200）。

表3. 安静値および4回のヘッドカフ圧刺激における心拍数（HR）、平均動脈血圧（MAP）、皮膚血流量（ΔSkBF）および酸素化ヘモグロビン濃度変化（ΔO_2Hb_15mm）

<table>
<thead>
<tr>
<th></th>
<th>安静</th>
<th>Cuff1</th>
<th>Cuff2</th>
<th>Cuff3</th>
<th>Cuff4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>bpm</td>
<td>55.1 ± 7.5</td>
<td>54.7 ± 7.6</td>
<td>55.4 ± 8.7</td>
<td>55.6 ± 8.3</td>
</tr>
<tr>
<td>MAP</td>
<td>mmHg</td>
<td>86.9 ± 10.3</td>
<td>87.6 ± 8.7</td>
<td>86.5 ± 9.2</td>
<td>86.9 ± 8.8</td>
</tr>
<tr>
<td>ΔSkBF</td>
<td>AU</td>
<td>0</td>
<td>-158 ± 60</td>
<td>-176 ± 82</td>
<td>-170 ± 90</td>
</tr>
<tr>
<td>ΔO_2Hb_15mm</td>
<td>mM*mm</td>
<td>0</td>
<td>-0.52 ± 0.26</td>
<td>-0.75 ± 0.41</td>
<td>-0.66 ± 0.48</td>
</tr>
<tr>
<td>ΔO_2Hb_30mm</td>
<td>mM*mm</td>
<td>0</td>
<td>-0.73 ± 0.40</td>
<td>-0.87 ± 0.43</td>
<td>-0.75 ± 0.51</td>
</tr>
</tbody>
</table>

値は、平均値±標準偏差。HR, 心拍数; MAP, 平均動脈血圧; ΔSkBF, 皮膚血流量変化; ΔO_2Hb_15mm, 送光部-受光部間距離15 mmにおけるO_2Hb変化; ΔO_2Hb_30mm, 送光部-受光部間距離30 mmにおけるO_2Hb変化。* P < 0.01: 安静値と有意な差有。
第4章 研究課題3：皮膚血流量を除去した前額部脳酸素化動態算出法の開発

4回のヘッドカフ圧刺激による\(\Delta O_2Hb_{15mm}\)および\(\Delta O_2Hb_{30mm}\)の応答から算出した補正係数（\(a_0\)）は、0.898から2.083の範囲であった（表4）。また、変動係数は、22.8%と大きかった。

②妥当性の検証

コントロール条件のHRおよびMAPに変化は見られなかった（表5）。静的握力発揮時のHR（+21±14 bpm; \(P < 0.001\)）、MAP（+8±10 mmHg; \(P < 0.01\)）、\(\Delta SkBF\)（+161±221 AU; \(P < 0.05\）および\(\Delta O_2Hb\)（+0.56±0.60; \(P < 0.01\）は、安静値と比較して有意に増加した。同様に、認知課題時のHR（+4±11 bpm; \(P < 0.01\）, SkBF（+69±73 AU; \(P < 0.01\）および\(\Delta O_2Hb\)（+0.49±0.40; \(P < 0.01\）は、安静値と比較して有意に増加したが、MAP（P = 0.149）には有意な差は認められなかった。

<table>
<thead>
<tr>
<th>コントロール</th>
<th>静的握力発揮</th>
<th>認知課題</th>
</tr>
</thead>
<tbody>
<tr>
<td>靜的握力発揮</td>
<td>Cognitive task</td>
<td></td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>57±9 63±8 66±11 **</td>
<td>61±8 66±11 **</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>90±10 94±7 100±17</td>
<td>104±10 94±7 100±17</td>
</tr>
<tr>
<td>(\Delta SkBF) (AU)</td>
<td>161±221 * 69±73 **</td>
<td>161±221 * 69±73 **</td>
</tr>
<tr>
<td>(\Delta O_2Hb_{30mm}) (mM*mm)</td>
<td>0.56±0.60 **</td>
<td>0.49±0.40 **</td>
</tr>
</tbody>
</table>

** \(P < 0.01\), * \(P < 0.05\); 各条件の安静値と有意な差有。

図17には、コントロール、静的握力発揮および認知課題の各条件における\(\Delta SkBF\)および\(\Delta O_2Hb\)の代表的な経時的変化を示した。静的握力発揮および認知課題時の\(\Delta SkBF\)および\(\Delta O_2Hb\)は課題開始後すぐに増加を示したが、ヘッドカフ圧刺激により急激に低下した。一方、新しい分析方法および補正係数（\(a_0\)）を用い
第4章 研究課題3：皮膚血流量を除去した前額部脳酸素化動態算出法の開発

で算出した$\Delta O_2Hb_{estimated}$は、ヘッドカフ圧刺激による$\Delta SkBF$時の変化は見られなかった。

図17. コントロール、静的握力発揮および認知課題における皮膚血流量変化（$\Delta SkBF$）および酸素化ヘモグロビン濃度変化（ΔO_2Hb）の代表的な経時的変化

5秒間のヘッドカフ圧刺激により、$\Delta SkBF$は、全ての実験条件において、圧刺激前と比較して有意に低下した（コントロール、-106 ± 51 AU, $P < 0.001$; 静的握力発揮、-146 ± 111 AU, $P = 0.001$; 認知課題、-117 ± 80 AU, $P < 0.001$, 図18). 同様に、ΔO_2Hb_{30mm}も全ての条件において、圧刺激前と比較して有意に低下した（コントロール、-0.46 ± 0.21 mM*mm, $P < 0.001$; 静的握力発揮、-0.24 ± 0.21 mM*mm, $P = 0.005$; 認知課題、-0.46 ± 0.37 mM*mm, $P = 0.001$). 一方、$\Delta O_2Hb_{estimated}$は、全ての条件において、ヘッドカフ圧刺激による変化は認められなかった（コントロール、-0.10 ± 0.20 mM*mm, $P = 0.062$; 静的握力発揮、-0.03 ± 0.27 mM*mm, $P = 0.666$; 認知課題、-0.09 ± 0.17 mM*mm, $P = 0.105$).
第 4 章 研究課題 3：皮膚血流量を除去した前額部脳酸素化動態算出法の開発

図 18. コントロール、静的握力発揮および認知課題の各条件における 5 秒間のヘッドカフ圧刺激時の皮膚血流量変化 (ΔSkBF)、酸素化ヘモグロビン濃度変化 (ΔO₂Hb₃₀mm) および NIRS 信号に含まれる SkBF の影響を除去した酸素化ヘモグロビン濃度変化 (ΔO₂HbEstimated)。

値は、平均値 ± 標準偏差。
第4章 研究課題3：皮膚血流量を除去した前額部脳酸素化動態算出法の開発

4.4 考察

研究課題3では、各被験者により異なるNIRS信号に対するSkBF影響度を考えた新たな前額部脳酸素化動態の推定式を考案した。脳神経活動が亢進する静的握力発揮および認知課題（言語流暢性課題）中におけるΔO₂Hbは、SkBFの変化に大きく影響を受けたが、この新しい推定式から算出したΔO₂HbEstimatedにおいてはSkBF変化の影響は消失した。つまり、推定式から算出したΔO₂HbEstimatedはSkBFの変化に影響を受けないことが示され、研究課題3において考案した新しい分析方法の妥当性が証明された。

研究課題3では、NIRS信号に対するSkBFの影響度をプローブの送光部一受光部間距離15mmおよび30mmから同定した。この同定には、研究課題2の方法と同様、ヘッドカフ圧刺激により機械的にSkBFのみを変化させることで行った。ここで同定したΔO₂Hb30mmとΔO₂Hb15mmのSkBFの影響度の違いから補正係数（a₀）を算出した。この補正係数は、ΔO₂Hb30mmとΔO₂Hb15mmのSkBFの影響度の比率を表しており、「1」ではΔO₂Hb30mmとΔO₂Hb15mmに含まれるSkBFの影響は同じ、「1以上」ではΔO₂Hb30mmで大きく、そして「1以下」では逆となる。算出した補正係数（a₀）は、0.898から2.083の範囲内であり、変動係数が22.8%と大きかった。

また、被験者1名を除いた、他11名の補正係数（a₀）は「1以上」であり、多くの被験者においてΔO₂Hb15mmに含まれるSkBFの影響は、実際のΔO₂Hb30mmに含まれるSkBFの影響よりも小さかった。この結果は、プローブの送光部一受光部間距離の違いによるNIRS信号に含まれるSkBFの影響度の差異も被験者間で大きく異なることを示唆している。

各被験者から算出した補正係数（a₀）を用いた前額部脳酸素化動態推定式の妥当性は、脳神経活動の亢進およびSkBFの増加が共に観察される、静的握力発揮および認知課題（言語流暢性課題）の異なる2条件により検証を行った。先行研究と同様に両条件にΔO₂Hbは増加した(Kameyama et al., 2004; Suto et al., 2004; Miyazawa et al., 2012)。一方、両条件中のヘッドカフ圧刺激に伴うSkBF低下により、ΔO₂Hbは有意に減少した。しかしながら、補正係数を用いた推定式より算出したΔO₂HbEstimatedは、SkBF低下による変化は認められなかった。このことから、研究課題3において考案した分析方法は、脳神経活動が亢進した条件下においてもNIRS信号に含まれるSkBFの影響を除去できることが証明された。
4.5 まとめ

本研究課題は、NIRS 信号に含まれる SkBF の影響を除去するための新しい分析方法を考案し、その妥当性を検証した。本研究課題は、NIRS 信号に含まれる SkBF の影響を各測定対象者に対して同定し、NIRS 信号と SkBF 変化との関連性を数量化することにより、SkBF の影響を受けない前額部脳酸素化動態の推定を試みた。本研究課題で考案した分析方法においては、各測定対象者間で異なる解剖学および生理学的要因に依存した NIRS 信号と SKBF 変化の関連性を考慮することにより新規性を有する。検証実験の結果、SkBF の影響を受けない前額部脳酸素化動態の推定の妥当性が示され、本研究課題で考案した推定法は、循環動態の変化した条件下の測定においても有用であることが証明された。
第 5 章 総括

5.1 研究課題の総括

近赤外分光法（NIRS）は、非侵襲的にかつ比較的簡易に脳酸素化動態を測定する方法として臨床現場をはじめ運動・健康の研究分野など幅広く活用されている。NIRS 測定では、皮膚表面から直接近赤外光を照射し、検出光における吸光度の変化から組織内酸素化動態を同定することができる。皮膚表面から照射された近赤外光は、頭皮、頭蓋骨、くも膜および大脳皮質などの異なる組織を伝播し、その一部が再び皮膚表面まで戻る。そのため、NIRS 測定においては、大脳皮質以外の頭蓋外の透過組織における酸素化動態も同時に反映し、実際の脳酸素化動態を正確に反映しない条件があることが問題とされている。手術中など生死にかかわる状況において、正確な脳酸素化動態のモニタリングが行えないことは、非常に重要な問題であり、これらの早急な問題解決が求められている。そこで、本研究は NIRS 測定の問題点として指摘されている頭蓋外血流量の影響に着目し、その影響を除去した前額部脳酸素化動態測定法の確立を目的として実験を行った。

研究課題 1 では、脳神経活動の亢進および皮膚血流量（SkBF）の増加が共に生じる条件において、NIRS 信号が前額部脳酸素化動態を正確に反映するか否かを検討した。その結果、SkBF が増加する運動時における NIRS 信号のΔO₂Hb は、脳酸素化動態よりも SkBF の影響を強く反映し、正確な前額部脳酸素化動態を同定できないことが明らかとなった。このことから、NIRS 測定は、運動など SkBF が変化する条件下では前額部脳酸素化動態の同定に有用でないことが証明された。そして、研究課題 1 の結果から運動など SkBF が変化する条件下において、NIRS 測定により正確な前額部脳酸素化動態を同定するためには、NIRS 信号から SkBF の影響を除去することが必要不可欠であり、そのためには、NIRS 信号に含まれる SkBF の真の影響度を明らかすることが必要であると考えられた。

そこで、研究課題 2 では、循環動態および脳神経活動の変化が伴うことなく、SkBF を操作し、NIRS 信号に含まれる SkBF の真の影響度を明らかにすること、およびブローブの送光部－受光部間距離の違い（15 mm、22.5 mm および 30 mm）が NIRS 信号に及
ぼす影響度を明らかにすることを目的とし実験を行った。その結果、ヘッドカフ圧刺激により、SkBFは減少し、それに伴ってΔO\(_2\)Hbも同様に低下し、両値間に有意な正の相関関係が認められた。しかしながら、NIRS信号に含まれるSkBFの影響は、送光部－受光部間距離（15 mm, 22.5 mmおよび30 mm）の違いにより差異は観察されなかった。このことから、送光部－受光部間距離に依存するΔO\(_2\)Hbに対するSkBFの影響が各被験者により解剖学および生理学的要因により大きく異なることが明らかとなった。これは、送光部－受光部間距離の異なるプローブから検出されたNIRS信号を用いて、SkBFのΔO\(_2\)Hb変化の影響度がどの被験者に対しても一律であることを前提に算出している従来の方法では、NIRS信号に含まれるSkBFの影響を除去できないことを示唆している。これらの結果から、NIRS信号に含まれるSkBFの影響を除去するためには、測定対象者ごとに異なるNIRS信号に含まれるSkBFの影響を同定した新しい分析方法の作成の必要性が示された。

研究課題３では、研究課題２から得られた「NIRS信号におけるSkBFの影響は、測定者対象者により大きく異なる」という知見を基本概念とし、測定対象者ごとに異なるSkBFの影響度を同定した分析方法を考案した。そして、この新しい分析方法の妥当性については、脳神経活動が亢進する静的握力発揮および認知課題中の2条件において検証を行った。その結果、本研究において提案した分析方法は、脳神経活動の亢進およびSkBFが増加した条件下において、NIRS信号に含まれるSkBFの影響を除去できることが証明された。したがって、NIRS信号に含まれるSkBFの影響を除去するためには、本研究課題で考案した測定対象者ごとに異なるNIRS信号に含まれるSkBFの影響を同定する分析方法が有用であることが示された。
第5章 総括

5.2 結語

本研究では、①運動時など皮膚血流量が変化する条件下での NIRS 測定は、皮膚血流量の変化に大きく影響を受けるため前額部脳酸素化動態の同定に有効でない、②NIRS 信号に含まれる皮膚血流量の影響は、各測定対象者により大きく異なる、そして、③NIRS 測定に対する皮膚血流量の影響を除去するための分析方法は、NIRS 信号に含まれる皮膚血流量の影響を各測定対象者に対して同定し、NIRS 信号と SkBF 変化との関連性を数量化することにより、脳神経活動の亢進する条件下においても妥当性が証明された。

NIRS 測定は、非侵襲的にそして比較的簡易に脳酸素化動態を評価する方法として、臨床現場に限らず、治療、リハビリテーション、さらに、健康・運動領域への応用など、今後さらに幅広く活用されることが予想される。このような状況において正確かつ信頼性のあるデータを測定するためにも、NIRS 測定における問題点を解決することは重要となる。NIRS 測定における重要な問題点を解決し、新しい分析方法の確立を行った本研究は、今後の NIRS 測定における発展に大きく貢献するものである。
第6章 参考文献

第7章 研究業績一覧

【学術論文】

6. 塚本敏人, 橋本健志, 平澤 愛, 長谷川博, 小河繁彦. 自発的過換気による急性の脳血流量の減少が認知機能に及ぼす影響. 日本生理人類学会誌

-60-

【学会発表（国際）】

Meeting and 4th World Congress on Exercise. Indianapolis, USA, 2013.

【学会発表（国内）】
1. 平澤 愛, 田中 尚樹, 小河 繁彦.: 定量的な前額部皮膚血流量変化がNIRS信号に及ぼす影響. 第4回NU-Brainシンポジウム, 東京, 2014.

5. 佐々木 寛幸, 小野 慎之助, 平澤 愛, 小河 繁彦.: コーヒー摂取の急
第7章 研究業績一覧

性昇圧応答に対する低強度運動の影響. 第69回日本体力医学会大会, 長崎, 2014.

15. 塚本 敏人, 橋本 健志, 平澤 愛, 小河 繁彦. : 脳血流量の低下が認知機能に及ぼす影響. 第 64 回日本体育学会大会, 滋賀, 2013.

第7章 研究業績一覧

22. 塚本敏人，平澤愛，長谷川博，小河繁彦：脳血流量の変化が認知機能に及ぼす影響．第8回生理学会プレコングレス 環境生理（東京女子医科大・早稲田大学連携先端生命医科学）2013.

23. 菅原順，小野田拓也，小友教平，平澤愛，小河繁彦：若年者の喫煙が呼吸機能、圧受容器反射及び末梢血管特性に及ぼす影響について．第8回生理学会プレコングレス 環境生理（東京女子医科大・早稲田大学連携先端生命医科学）2013.

24. 小河繁彦，山下智宏，平澤愛，西山哲成：寒冷環境下におけるウォーミングアップ効果に関する基礎的研究：疲労と体温変化．第8回生理学会プレコングレス 環境生理（東京女子医科大・早稲田大学連携先端生命医科学）2013.

25. 芝﨑学，佐藤耕平，岡崎和伸，宮本忠吉，平澤愛，小河繁彦：暑熱負荷中の血流分配 —頭部における分配—．第8回生理学会プレコングレス 環境生理（東京女子医科大・早稲田大学連携先端生命医科学）2013.

28. 平澤愛，佐藤耕平，大上安奈，定本朋子，小河繁彦：高強度運動時のNIRS信号は頭蓋内酸素化動態を反映しない．第67回日本体力医学会
第7章 研究業績一覧

大会、岐阜、2012.

29. 平澤 愛、佐藤 耕平、岡崎 和伸、宮本 忠吉、小河 繁彦、芝﨑 学：暑熱負荷時における二酸化炭素分圧（PCO$_2$）変化に対する外・内頸動脈血流反応．第51回日本気象学会大会、長野、2012．

30. 佐藤 耕平、平澤 愛、岡崎 和伸、宮本 忠吉、小河 繁彦、芝﨑 学：暑熱負荷による脳血流量低下に対する外頸動脈血流量の関係性．第51回日本気象学会大会、長野、2012．

31. 平澤 愛、佐藤 耕平、岡崎 和伸、宮本 忠吉、芝﨑 学、小河 繁彦：暑熱負荷時における二酸化炭素分圧（PCO$_2$）変化に対する外・内頸動脈血流反応 第26回呼吸研究会2012年日本体力医学会サテライトシンポジウム、岐阜、2012．

32. 平澤 愛、小河 繁彦：顔面冷却・加温および静的運動による前額部皮膚血流変化時におけるNIRS信号の応答．運動と循環研究会2012、筑波、2012．

【シンポジウム】
1. 平澤 愛、田中 尚樹、舟根 司、木口 雅史、Henrik Sørensen, Niels H. Secher, 小河 繁彦：近赤外分光法における皮膚血流の影響を分離・除去した脳酸素化動態測定法の検討．生体医工学シンポジウム．埼玉．2014．
本博士論文を作成するにあたり、終始丁寧なご指導、ご鞭撻を頂きました東洋大学工学研究科 小河繁彦教授には、心より感謝を申し上げます。実験、データ解析さらに本論文を作成するにあたり、多くのご指導、ご助言を頂きました東洋大学工学研究科 田中尚樹教授に深く感謝を申し上げます。本論文を作成するにあたり、ご指導、ご助言を頂きました東洋大学工学研究科の望月修教授に深く感謝を申し上げます。また、本研究の実験およびデータ解析を行うにあたり、ご指導、ご助言を頂きました日本女子体育大学 附属基礎体力研究所の佐藤耕平准教授、定本朋子教授ならびに東洋大学食環境科学部の大上安奈先生に深く感謝を申し上げます。さらに、本研究を遂行するにあたり、ご助言を頂きましたデンマークコペンハーゲン大学 Dr. Secher NH, Dr. Sørensen H, 日立製作所中央研究所 舟根司氏ならびに木口雅史氏に心から感謝いたします。

実験をサポートして頂いた東洋大学小河研究室の柳澤慎太朗氏ならび金子貴仁氏に感謝致します。そして、常に協力して頂いた小河研究室大学院の佐々木寛幸氏、小野新之助氏ならびに小河研究室学部生の皆様にお礼申し上げます。

本研究の一部は、東洋大学井上円了助成金によって行われました。ここに感謝の意を示します。