環境概念の前史 ～環境内存在の現象学的アプローチへ向けて～

<table>
<thead>
<tr>
<th>著者名</th>
<th>稲垣 諭</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>「エコ・フィロソフィ」研究</td>
</tr>
<tr>
<td>号</td>
<td>1</td>
</tr>
<tr>
<td>ページ</td>
<td>165-180</td>
</tr>
<tr>
<td>発行年</td>
<td>2008年3月</td>
</tr>
<tr>
<td>URL</td>
<td>http://doi.org/10.34428/00003389</td>
</tr>
</tbody>
</table>

Creative Commons: •
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.ja
環境概念の前史
—環境内存在的現象学的アプローチへ向けて (1) —

東洋大学 TIEPh 研究助手 稲垣 諭

キーワード: 環境、生態学、媒質、実証主義、有機体、内部環境、現象学

はじめに
X が何であるかをイメージしてみる。

「X は、所有できるものではない。それはまた背景にある物事のような潜在的なものでもない。X は、表面なき深みで展開する、厚みをもった形なき内容である。ヒトは X に接近することはできず、ただ X に浸るのみである」。

どうやらず私たちは、この X とのかかわり方を変えねばならないところに来ている。そもそも接近できないものに近づいたり、遠ざかったりするような試みは当初から無謀なようにも思える。しかし手がかりがないわけではない。それは、メタファーが示すように、表面なき深みであり、厚みであり、私たちが浸っている当のものであるらしい。この試みは私たちに、感覚を研ぎ澄ますことを、つまり、それへの感度の覚醒を要請している。メタファーとしてしか語れないものには、それなりの理由がある。圧倒的な感度の足りさもその理由のひとつである。この X とは、フランス現象学者の一人レヴィナスが、「環境（milieu/environment/Umwelt）」と名づけたものに他ならないxxii。私たちが環境という語からイメージするものと、X どの程度重なりあうだろうか。

地球環境をめぐる人類の取り組みは、ここ数年の間に激変している。IPCC は 2007 年の第 4 次評価報告書で、地球温暖化が人為的なものである可能性が極めて高いことを認め、このままの経済成長を維持しつづけることが、地球および人類に多大な被害をもたらすことを指摘したxxiii。この IPCC の貢献がノーベル賞に輝いたことも手伝い、環境問題についてのコミュニケーションは、さまざまなメディアによって爆発的に産出されている。とはいえ、環境問題の厄介さのひとつは、コミュニケーションの産出がそのまま現実的な取り組みに結びつくことがないことにあるxxiv。事実、日本の温暖化ガスへの取り組みは八方詰まりの感が無くもない。2006 年度の概算では、温暖化ガスは、前年度比で 1.3％減少したらしいが、京都議定書の目標達成にはなおも 12.4％の削減が必要である。国際的なネッ
トワークをもつ産業界や工業界の各企業は、環境問題に積極的なEUの基準を満たすために努力をすでに強いられているため、ぎりぎりの瀬戸際で省エネの技術開発を行っているというのが現状であろう。画期的な代替エネルギーが今後開発されることがない限り、これは以上の温暖化ガスの大幅な削減は難しいようにも思われる。さらに、2006年度の日本の温暖化ガスの削減成果も、暖冬が要因に入れられることで、政策的取り組みが有効に機能したのか、それとも政策者は独立に気温の影響でたんに減っただけなのかが判断されえない状態に陥ってもいる。こうした決定不能状態を生みだす要因が数ある出現していくことも、環境問題を複雑にしている理由のひとつである。またそれ以外の問題として、オフィスや家庭部門における排出量が、減るどころではなく、6.4%も増加していることが挙げられている。これだけ環境問題についてのコミュニケーションが増加しているので、その環境内で生活している当の人々の意識や行動を変化させることは容易ではないのである。

とはいえその他方で、ドイツですでに実施されていた太陽発電を投資システムとして動かせる試みが、長野県飯田市といった日本国内でも行われ始めている**。飯田市では、年間の配当利回りを銀行の利回りより高い2%以上に設定することで、このシステムを動かすのに十分な投資者を得たようである。投資システムを同時に動かせるということは、この試みに参加するための条件の数値を低くすることである。つまり、環境意識が当初より高い人々だけではなく、興味はあるが行動に移すことができない人々に対して付加価値を与えんである。全体としてより多くの人々の動員を可能にするのである。実際、最初の動機が不純なものであったとしても、環境問題への継続的にかかわることで、おのずと行動が変化してしまうことがある。重要のは、多くの参加者を環境への取り組みにアクセスさせるための選択肢が豊富に存在するかどうかであって、環境への意識が低いことを批判し、自らで意識を高めるよう説き続けるだけではもはや十分ではない。今後の環境問題への取り組みにおいても、どれだけ魅力的な選択肢や付加価値を設定できるかが、焦点になってくると予想される。環境問題は、それが身に迫る危機として実感されない限り、現状についての科学的知識を伝達するだけでは十分ではない。さらに禁止をかえて抑制するよう訴えるだけでも効果は上がらない。この点からいっても、環境へアクセスするための有効な環境デザインを現実社会に提示することが求められていることは言うまでもない。

ただし、こうした現実的な選択肢の構想を打ち出す同時に、そもそも環境とはどのようなものであるのか、そして、それへとアクセスすることとはどのような事態であるのか、できる限り明確にしておいたほうが良い。私たちは、環境という概念で何を理解しているのか。もしくは何を理解すべきなのか。問いは切迫的になればならないほど、その問いからの距離が取りにくくなる。そこで本稿では、環境概念の前史を概観しつつ、上記の問いに見通しうるための足掛かりを作りたい。そのことが、今後ますます切迫するであろう環境にかかわる問題から、ある種の距離をとることを可能にするとも思われる。そのさい「環境」が「何であるのか」を特定する議論にとどまらず、「環境とともに私たちはどのように行為し、その中で私たちは何になりうるのか」という可能性へ屈かせる議論を行いたいと考えている。
I 環境のとらえ難さ
「環境」という語は当初より、生物が「その中」にいないということが考えられないようなものとして設定されている。さらには「その中」と述べる際の、「その」という閉域が何であるのかを問い始めると終わりが見えないようなものとして設定されている。にもかかわらず、地球環境や自然環境、生態環境、社会環境、体内環境、米内環境というように多くの環境が存在していると誰もが思っている。例えば、大学内のトイレに備えつけのトイレットペーパーが三つ滅ったことを、学内環境の変化とはいわないが、エレベーターが設置されたり、新校舎が建てられると学内環境が変化したということもある。また、山林の木々が三本倒れたらいでは環境が失われたとはいわないが、三三百木伐採されたときは環境が損なわれたという例もある。これら二つの例で、そもそも環境概念の内包は一致しているのだろうか。それとも、大多の作物の場所移動によって環境は規定づけられるのだろうか。しかし、新設されたエレベーターや伐採された木が環境なのかはなく、それ以前の校舎や森林といった物質の集合それ自体が環境なのではない。その意味でも環境は、物質的なものの移動ないし変化と密接に関係しつつも、物質的なものに完全には還元することはできない何ものである。この還元不可能性が、環境概念を豊かにするときに同時に、曖昧なものにしている。ただし、この概念の曖昧さは、たとえば「浄福」や「無」といった概念の曖昧さとは異なる。浄福や無は、「浄福一般」とも「無一般」について語ることができ、それが固有の哲学的、宗教的議論になることもある。それに対して、環境一般について語ることは何について語ることなのか。環境一般論を論ずるのが困難な理由のひとつは、環境という概念が「何にとって」の環境なのかという問いと切り離すことができないことにある。この何にとっての「何」が、たとえば地球や生態系、社会、人間、身体、貧困者、高齢者、身体障害者などに切り替わることで、環境概念の射程は収拾がつかないほど大きく変化してしまう。現在叫られている環境問題においても、何をすれば環境へとアクセスするのかが決まらない状況が多々出現しているが、これから上記の環境概念の固有性に含まれているものである。以下では、この環境という概念について理解が生まれた思想史的状況を概観してみる。

II 環境概念前史
①ニュートン力学とアエテル
そもそも環境概念が、現在のように生態学(ecology)と結びつけられ論じられるようになったのは、そう思うことではない。とはいえ、環境(milieu)概念自体は、すでに18世紀にディドロとダランベールによって編纂された『百科全書』(1751-1780)にも項目として取り上げられている。ただ、その概念の意味するところは現代からはいまだ隔たっており、その辺の事情をカンギレムが詳細に跡付けている。彼によれば、環境ということで理解されているものの故郷は、17-18世紀のニュートン力学にある。その後、概念自体は18世紀の物学から生物学にもちこまれることである。確かに百科全書でも環境は、「力学」の一項目として紹介されている。百科全書の編纂にかかわったフランスの力学専門家は、環境を古典力学における「流体(fluid)」として理解し、それは当時
の概念では「エーテル（ether）」によって代表されると考えていた。ギリシャ語に由来するエーテル概念自体は、さらに古い語源的歴史をもつが、ニュートン力学の登場とともにその意味内容に大きな変化が生じる。というのは、物質間に働く相互作用や遠隔作用を考える上で、そうした作用自体が伝達されるための「場所」、すなわち「媒質（medium）」の存在が、力学的、数学的に精密化され始めるからである。逆から言えば、それ以前の物理理論では「衝突」や「接触」を典型的な力学的現象ととらえていたため、たとえ媒質が認識されていたとしても、その力学的役割をそれとして問う必要がなかったともいえる。

それに対して、近代の光学の確立に貢献した、ホイヘンスやフック、ニュートンは、それぞれが異なる立場を展開しつつも、光の回折の力学的法則を取り出すために媒質の役割を明らかにする必要に迫られている***。中でもニュートンは、天体惑星の運動から光の現象、物体の物質性にまで通用する、一元的な説明原理を求めていたと裏付けた。距離をもつ二つの物質間においても作用は伝わるのであり、その伝達を担うのが媒質である。波は水を媒質として伝わり、音は空気を媒質として伝わる。水中でも音は伝わり、逆に真空になると音は伝達されない。ただし、光や熱が真空であっても伝達されるのは、エーテルが媒質となっているからである。当時、横波の振動という発想がなかったために、エーテルは半ば必然的に要請されたところがある。このエーテルは、実験では見出せない微小物質とみなされていたが、ニュートンはそれをあくまで仮説というかたちで考察している**。

『百科全書』の項目でも、エーテルや空気、大気、水、ガラスといった物質が、媒質としての環境の例として挙げられており、物質の凝集や表面張力、光の回折などを考えるさいに媒質の考察が不可欠だったのである****。先に述べたように、現代における環境は必ずしも物理的現象に還元されえない。しかしこの当時は、空気より微細で希薄な物質の一種とみなされていた「エーテル」が、環境という考えにつながるものを作製していた。

この流体・媒質という理解の中にはすでに、「二つもしくは多数の物質の間に満ち、それらを取り囲んでいるもの」という理解が生じている。ニュートンは『光学』において、エーテルが、宇宙空間を満たし、動物の体内にある眼や神経、そして筋肉にまで満ち、振動することで作用を伝えるものではないかと問っている**。ドイツ語で環境を意味するUmweltは、「um＝取り囲む」という前提詞と「世界」からなる造語であり、フランス語のmilieuは、二つの物理の中間にある場所を意味している。英語もこれと同様である。冒頭でレヴィナスの環境概念を紹介したが、そのさいに「浸る」という動詞が用いられていたのも、このこととは無関係ではない。浸ることは、濡れることとは異なる。流体的なものにすっかりと取り囲まれて初めて「浸る」ことになる。しかも環境が、物質的な流体として理解されている限り、私たちはメタファーではなく実際に環境に浸っているのである。

② コントと実証主義

19世紀実証主義の確立に大きな役割を演じ、社会学の創始者とも言われているコント（1798-1857）は、無機的世界の物理学や天文学といった精密科学だけではなく、人間の本質を扱う「社会物理学」をも実証的に構想しようとしていた。こうした構想の背後でコントは、人間の社会活動や歴史の運動においても物理学同様の普遍的法則性があることを確
信しており、これまでの哲学や社会学、歴史学が、そうした法則に迫るための方法論をも
ちあわせていないことに警鐘をならしたのである。コントにとって「形而上学」は、人間
の営みを実証的段階と接近させるのに資するだけの準備段階であって、それ自身は虚
構的とすら形容される「神学」の一変容であり、人間精神の未熟である***xiv。人類は、知
の梯子を登るように、神学から形而上学を経て、実証的段階へと、つまり、想像的な知か
ら観察的な知へといたる。これが、人類の知を統合するコントの「三段階の法則」であり、
そこには彼の進歩観が端的に示されている。ただし、このように実証化を推し進めるコント
は、カッシーラーが述べるように素朴な自然主義に陥っているわけではない。そうでは
なく彼は、物理学的世界とは異なる「歴史学的世界の自律性」を明らかにすることに余念
がなかったのであり、それを解明する手立てこそが実証的方法だったのである。
こうした思惟を背景として、1838 年にコントは『実証哲学講義』の中で「環境」概念を
新たな概念として生物学に導入することを宣告する。「私は今から、生物学のなかで環境と
いう語を頻繁に使用する。しかし、その言葉によって私は、単に有機体がそのなかに浸っ
ている流体のことを指すだけではなく、ある特定の有機体の生存にとって必要な、任意の
種類の外的な状況の全総体のことをも指すつもりである。この言葉が生物学にとっていか
に必要なものであるのかに気づく人なら、私がこの新しい表現を導入することを非難はし
ないであろう」***xv。コントの語気からも理解されるのは、19 世紀でも環境概念はいまだ
「流体」という力学的意味をもっており、彼はそうした意味から、環境概念を解放もしく
は拡張しようと目論んでいたということである。こうした発言をコントに促した背後には、
18 世紀から 19 世紀にかけてのフランス生物学の展開が大きな役割を演じている***xvi。ビュ
フォンやラマルク、ビシャ、サンティエール、キュヴィエといった多くの自然科学者が、
生物の固有性を科学的に分析するための手法を、つまり新たな生物学を構築しようと模索
し続けたのである。生物を「有機体」としてとらえる発想も、この時期にはすでに自明な
ものとなっており、この有機体との関係において初めて環境概念は新たな意味をもつ始め
る。つまり、「物と物との相互作用ではなく、それ自体一つの自律的なシステムである生
命とその環境の関係」が問われる始めるのである。ここにはすでに、「生命なしにはその環境も
なく、環境なしに生命も存在しない」という発想の萌芽が含まれている。
とはいえ、コントの環境概念の刷新の試みが首尾よくいったとはいえ難い。確かに生命
としての有機体は、つねにさまざまな外的条件のもとで活動しており、有機体に影響を与
えるそうした外的条件の総体が環境へと拡張されている。しかし、有機体とその外的環境
の間に力学的な因果関係が暗に設定され続けているため、環境とは、かたちを変えた物理
的、力学的な集合に他ならず、有機体とは自動機械にすぎなくなる。事実コントは、「重量
や空気圧、水圧、運動、熱、電気、化学種」（第 43 講）を、環境の変数として取り上げて
おり、それにより有機体と環境の関係は、関数とその変数の対応関係へと還元されている
ように見える。ここでは、「作用－反作用」という力学の作用原理だけでなく、「事物的
実体性」や「同一性」という側面的なモデルが残りつづけている。それゆえ、環境概念が
生物学新たに導入されたとはいえ、流体とは異なる外的条件が多発的なときにすぎ
ない。その意味では、コント本人が目論んだことは伝えられ、有機体の環境決定論が主張
されているのである。当時の実証主義的な科学観では、この踏み込みが限界だったのかも
しれない。というのも、コントにとって「どの科学的仮説も、それが実際に真偽として判定可能であるためには、もっとも現象の法則のみに関係しなければならず、その産出のモードに関係することがあっては決してならない」xxxviiからであり、このモットーを外れると、実証的精神の「合理的な予測」は裏切られざるをえないからである。コントの格言のひとつに、「予測だけは次なる科学的行為を生み出す」というものがある。にもかかわらず、環境と有機体の関係は、実証主義的な予測の範囲を超えたところでこそ、その固有性を示す。つまり、たとえ外的条件が等しくても、絶えず別様な行動が可能なところに有機体の固有性があり、かつ有機体は、環境に依存せずに自らを維持し、ときに自らを変貌させる。さらに人間の場合、環境の条件そのものも変更し、更新していく。『実証哲学講義』に先立ってコントはすでに、有機体の諸現象に対する精密科学的分析の応用が不可能であるということを、生理学者のビシャから学んでいたxxxviii。にもかかわらず、それに代わる分析的道具立てがあまりにも乏しかったのである。そしてこのことは、人間にとっての固有な環境としての社会を分析するさいにも同様に妥当する。コントの思想には、新たな学問が生まれつつある過渡的時代の典型的な困難が出現している。つまり、これまでの学問的アプローチでは掻いきれない領域が明確に指定されているにもかかわらず、それを分析する手立てがなされないため、結局、これまでの道具立てによって無理やり説明を与えるより他ならないというかたちになっている。だからとはいえ、環境概念や社会概念を固有なものとして設定し、それらを明確に科学的探究の基にのせようとしたコントの業績は、過小評価されるえない。皮肉にもコントはその晩年、私生活上の不運も重なることで、実証科学的なみずからの立場とは単純には相容れないように見える「人類教」という教団を設立し、倫理や宗教的愛の理説を説き始めることになるxxxix。

③ベルナールと内部環境

コントと同じく、19世紀の実証的な科学の展開を後押しした生理学者のひとりがコルド・ベルナール（1813-1878）である。彼は、後の実験生理学および実験医学の確立に多大な貢献を行った。1848年パリに設立された生物学会では、「環境すなわち外的因子の有機体への影響を研究する学問」が、すでに生物学の四部門のひとつに数えられており、その副会長でもあったベルナールも当然そのことを了解していたxi。彼の「環境」についての科学的探究で見過されてはならない功績は、有機体にとっての外部環境ではなく、有機体それ自体の内部における環境を発見したことである。それを彼は、「周囲環境」ともしくは「内部環境」と呼んでいる。

現在でも多くの示唆に富む『実験医学序説』（1865年）の中でベルナールは、生物に対する「実験」がもつ科学的意義を強調し、それに対する生気論からの妨害を取り除こうと腐心している。たとえば、生命の機能的連関性を強調したキュヴィエは、有機体の全体から部分を切り離すことは、その本質を変化させることに等しいとして「実験」そのものに反対していたxii。このことから、実験は、無機物を扱う物理化学においてのみ有効な手段であり、生命を扱う科学は、実験とは別の原理的根拠に基づいて探求を進める必要があることが帰結する。そのさい生気論者は、実証的・実験的手段では扱えない生命の固有性として
「生命原理」や「生命力」といったものをもちだし、自らの正当性を根拠づけようとするという立場をベルナールはあくまでも認めず、それに対して「絶対的デテロニズム」という実験医学の公理を打ち出す。これは、すべての現象には絶対的で必然的な関係性や法則が存在するという科学的立場の表明である。

確かに生気論者がいうように、高等動物は外的環境の諸条件からの独立に活動する自発性を備えているように見える。しかし滴虫類のように単細胞生物は、湿度や光、熱といった外的条件の影響なしではそもそも生存できない。それゆえ、生物現象も無生物現象と同様に、物理化学的条件に支配されているはずである。ところが、高等動物がたえ環境独立的に見えるとしても、それは生体の外的条件や内条件の複雑さが積重ねに増加するため、その法則をうまく取入れていけないのであるとわずかすが、科学者の態度としては健全である。そしてそのためにも、有機体の細部を知るための「実験」を欠くことはできない。これがベルナールの科学者としての確信である。デテロニズムの宣誓は、生気論か機械論か、もしくは非決定論か決定論かという立場を競うこととは関係がない。

むしろそれは、実験生理学の探求の発見的規範なのであって、生物学の科学的探求に終わりがないことの宣誓なのである。このことは、「生命という雑葉は、無知を意味するものに他ならない」というベルナールの格言にも示されている。生気論者が固執する生命力といった神秘的な力の仮定は、科学的探求が行き詰まることの証であり、むしろ科学者は、そうしたものを前提せざるをえない場でこそ、デテロニズムの解明に取り組まねばならない。ビュフォン以降、キュヴィエやコント、ベルナールに共通する科学的探求の指針は、物理の第一原因を探求してはならないということである。原因を、現象の背後に求めてはならず、現象生成の理由を探求してならないという。探求されるべきは、現象が生じる理由ではなく、多様な事象がどのように現れるのかを示す法則だけである。ということは、科学的探求は最終的に決定して明示化できない領域を残し続けることになる。しかし、哲学や宗教とは異なり、そうした領域に踏み込まないことによってこそ、逆に科学は固有の課題をそのつど見いだし展開することが可能になる。ベルナールはそう考えている。

ただしベルナール自身も、生命体や有機体が、単なる物質の集合より以上のものであることは認めている。彼が、有機体の特性として「機能的調和や「調和的全体」といった概念を導入するのもそのためである。もともと争点は生気論か、機械論かというように立場を競うことではないかった。彼は「実験による分析」とともに「生理的紛合」の重要性もくりかえし説いている。というのも、これの生理的紛合によって初めて、「生体的単位を結合するときに、この分離した単位の中では預め認めることのできなかった特性が新たに現れてくるのを見る」ことができるからである。ベルナールは、生命体のひとつの単位は細胞であり、この細胞自体が、外的環境を受けることなく自律し、調和する全体であることと多くの生理学的実験により確証しようとしている。生命が、単なる物理化学的現象ではないのは、物理化学の法則だけでは、エントロピー増加に向かう「物質の衰退」を説明することはできても、自らで構造化し、自己維持する生命の機構を説明することができないからである。すでにベルナールは、生命が、力学的な均一状態への移行に抗う「動的平衡」の機構をもち、さらには、肝臓のグリコーゲン生成機能をも発見することによって、生命みずからを構成する物質をそれ自身で合成していることも気づいていた。
彼が導入した環境概念も、有機的生物のこうしたとらえ方と相即的に展開されている。たとえば、細胞じたいは直接外界に接触することはない。皮膚においてさえ、活動状態にある細胞は、死んだ細胞から作られる角層によって外部環境から隔てられており、その間を脂質や血液、リンバ液といった液質が埋めている。有機体内部の細胞も同様である。

とすれば、有機体にしろ、細胞にしろ、それみずからは直接的に外界環境にかかわることなく、血液やリンバ液といったものを、みずからを維持する環境として必要としている。これが「内部環境」である。細胞は、この内部環境に取り囲まれて初めて間接的に「外部環境」へとかかわることができ、かつ、みずからを外部環境と内部環境から境界づける。

その意味で内部環境は、細胞それぞれが独立するための条件であると同時に、細胞が外界環境にかかわるための媒質の役割を果たしている。有機体が、代謝や温度調整といった自律的機能を維持しうるのもこの内部環境のおかげである。ペルナールは、「栄養物質、温度、水分、酸素、循環液、血液、体液」等をこうした内部環境として挙げている。

この内部環境という概念には、「環境＝有機体」というように単に観察的な視点から両者を配置することのできない隔離が含まれている。それは、「外部環境＝内部環境＝有機体」というように項の数を増やせばよいという問題でもない。むしろ、「有機体が環境にかかわる」や「細胞が環境からの影響を受ける」といった事実記述が、つねにネタさせて与えずのような地点を指し示している。確かに内部環境は、有機体の成立にとっての「内の条件」である。しかし、血液やリンバ液を試験管に入れておけば、そこから有機体が生成するわけではない。つまり、それは有機体の必要条件であても、生成条件ではない。逆に、初めに細胞があり、それが必要な物質や液体を自分の部に排出したり、分泌したりしたもののが内部環境なんでもない。そうではなく、細胞がみずからをただ維持し続けることが同時に、内部環境とともに存在することなのであり、両者は何の根拠づけ関係でもないにもかかわらず、お互いを欠くことができない関係にある。その意味で細胞それが、外部環境だけではなく、実は内部環境にも触れて、かかわったりすることができない。ということは、「細胞＝内部環境」というような記述の「（ハイフン）」は、観察者に両者を一定の空間内に配置することとは異なる位相で交差している。「有機体＝内部環境」でも話は同じである。

たとえば、ほとんどの動物は、食物なしに生きることはできない。そのために食物を外部に探索する。そのさい、どのような食物が存在しているかは、外部環境の条件に左右されている。しかし問題はその先である。ペルナールは、取り込まれた食物は、そのまま有機体の栄養分となることはなく、食物から栄養分が直接的に取り出されるものではないことを強調する。

むしろ有機体は、みずからの内部で「栄養に役立つ、つねに同一の貯蔵物質を構成する」だけであり、みずからで栄養分を作り出すことが、すなわち化学物質としての食物が消滅することを意味している。その限りで有機体は、必要な栄養を外から取り入れるのではなく、自分で作り出す。脂肪も醣も同様である。それゆえ外的的に見れば、栄養摂取はつねに間接的である。この間接性を有機体自身からとらえるとき、それが「有機的創造」と呼ばれる。

19世紀の生物学には、生命を「生産するもの」と「消費するもの」とに区分する学説が存在していた。前者の典型が植物であり、後者が動物である。現在においてもこうした区
環境概念の前史—環境内在の現象学的アプローチへ向けて（1）

分が見出されることがあるが、ベルナルールはこの区別を端的に拒否する。先に見たように動物自身も生産するものだからである。むしろ生命は、「有機的創造（化学的合成・形態学的総合）」と「有機的崩壊（発酵・燃焼・腐敗）」という二つのプロセスによってだけ特徴づけられる。つまり、生命とは、みずからを作り出すと同時に作り出されたものを崩壊させる活動を行うだけである。この二つのプロセスは、植物や動物にかかわりなくすべての生命に妥当するとベルナルールは考えている。より隠喩的には、すべての有機体は、外部の食物を食べることはできず、むしろ食物一切を拒絶することで、みずからを食べている。そのさい栄養分や糖、脂肪は、有機体によって作り出されると同時に、その有機体の内部環境として「浸透」する。この「浸透」という概念は、水の入った容器に物体を浸すようなことでも、有機体や細胞が、内部環境から栄養を取り入れるということでもない。この概念は、どこまでもメタファーとながらざるをえない位相関係を特定している。仮にそれ以外の理解をしてしまえば、言葉を変えた「外部環境」が別様に語られているだけであり、ニュートン力学の流体への逆戻りである。そもそも「有機体—内部環境」は、「有機体—外部環境」のように空間イメージ的には配置できない位相空間的な交換関係にある。有機体が自分自身を維持する物質を産出しつづけることの延長線上、その環境は決して現れてこない。にもかかわらず、物質を産出しつづけることが同時に、有機体がその物質的環境の中に浸っていることである。ここには、ヴァレラやルーマンを手がかりに河本が展開しているシステム的発想、さらにいえばオートポイエシスの発想の萌芽が見出される。たとえば呼吸は、酸素を吸収し二酸化炭素を放出することではない。呼吸とは、次の呼吸を呼ぶことである。次の呼吸へとつながったときに初めて、以前のものが呼吸であったことが確定される。次の呼吸につながらないとき、それは呼吸ではなく、行為のきっかけをつかむために身構えているか、何かのショックで圧倒されているだけである。呼吸は呼吸を呼ぶ。ただこれの繰り返しである。そのさい、酸素は呼吸の環境として呼吸の継続に浸透している。また、経済活動も、支払いから支払いへとただその活動を継続するだけであり、そのさいさまざまな形態をもつ市場は、そのつどの環境として経済活動に浸透する。ここでは、呼吸同様、システム的閉鎖性が問題になっており、経済活動が固有の活動を通じて閉じると同時に、浸透してしまう環境が洞察されている。

先の動物と植物の区分で言えば、植物は、動物によって消費されるものとして配置される。しかし、ベルナルールが述べるように、生命はすでにそれ自体で完結して、閉じている。その限りで、動物はいえ植物を消費することはできず、自らで作り出したものを消費するだけである。ベルナルールは述べ、「生命は植物においても動物においても、常にそれにとして完全である。それぞれが半分の生命しかもたず、捕い合うために相手を常に必要とするなどということはない」。生命の活動から見れば、植物と動物という界的差異は端的に消失してしまうのである。

ベルナルールによる「有機体—内部環境」の発見とともに、環境概念の内実が大きく変化していることが分かる。このことは、単に生理学内部での環境概念の理解にとどまらない。一般化できる特徴としても、生命は、生命それ自体からみられるとき、環境に直接的にかかわることはできず、みずからが生命活動を続ける限りで浸透するものが環境であることになる。そのさい、浸透する環境が何であるのかは、観察者の視点によってそのとど変化
し、一義的に決定することはできない。むしろ、一個の有機的生命であっても、そのものにとっての内部環境と、その細胞にとっての内部環境はすでに異なっており、これら環境の解明が、科学的探究を展開する手がかりとなる。たとえば、地球の内部環境とは何であろうか。地球がそれとして、地球であり続けることに浸透する環境とは何なのか。地球は人間がいなくても成立している。その限りで、地球にとって人間のかわりはいまだ外的である。とすれば、人間が、地球に浸透する環境に成り行つたためには、いったい何が必要になるのか。この段階で、人間の可能性を拡張するイメージが要求される。ペルナールの環境概念は、こういったところまで一般化可能である。ただし、これまでのペルナール研究では、「動的平衡」や「ホメオスタシス」といった細胞の自律的機能と内部環境の生理学的役割を発見したことへの先駆的功績が強調されることがあっても、環境概念そのものがよう新たな次元の発見については、それほど強調されていないように思われるlv。

④ マッハと直接経験
19世紀末から20世紀初頭にかけて実証科学が勃興していくなかで、物理学的な基礎概念や経験そのものの内実を改めて批判的に捉え直そうとする動きが生まれた。物理学者のエルンスト・マッハ（1838-1916）やアヴェナリウス（1843-1896）を中心とするその運動は、経験批判論などと呼ばれている。マッハは、自然科学者そのものが一つの生命体である限り、科学的営みは、その生命による認識を通じてのみなわれているということを強調する。彼が目指したのは、いわば、自然科学的方法それじたいの生態－認識心理学の確立であるlv。マッハの構想の背後には、ドイツの生理学者のミュラー（1801-1858）やヘリッング（1834-1918）などを通じた、当時の生命の捉え方に関する生理学的、生物学的知識が強く存在しているlv。たとえば、彼の以下のような発言は、ペルナールが一昔前に述べていたとしても何の不思議もない。

「生命は全体としても、その部分においても、必然的に物理的法則に支配されている。それゆえ、生命を物理学的に把握し、『因果的』な考察だけを貫徹しようとするのは適切な考えである。しかし、そう努めたとしても、有機体の全くもって固有な質を必ず突き当たる。それは、従来見て取られた物理現象（『生命なき』生命のうちにはいかなる類比も見出せないような質である。生命は、その性質（化学的状態、体温の状態等）を外部からの影響に抗って保存することができ、かなり安定した力動的な平衡状態を維持するシステムである」lvii。

マッハは、こうした生理学的、生物学的解説に基づき、これまで物理理論が提示してきた力学的な自然世界とは異なる、生命がそこで生きている世界の解明に着手しようとした。マッハにとっての世界とは、感覚要素およびその複合であり、アヴェナリウス、ジェームズにとっては純粹経験、フッサールにとっては直接経験などと呼ばれている経験領域であるlviii。見かけ上、バーカリやヒュームといったイギリス経験論への回帰にも見える彼の試みは、いったい何を行ったことになるのか。たとえばマッハは、物理学が明らかにする「幾何学的空間」に対して、感覚複合から成立する「生理学的空間」の固有性を取り出してい
「環境的概念の前史—環境内存在の現象学的アプローチへ向けて（1）」

彼が述べる生理学的空間とは、私たちが生きているかぎりで出現する空間であり、質的な差異を含んだ、後の生態空間の別名である。五感をもち、それを通して世界にかかわる私たちは、均等で等質なユークリッド的空間の中にいるわけではない。天空が古来より、有限な半径をもつ球状のものだと思われていたのも、私たちの視空間こそが有限であり、かつ視野の境界が偏狭であるからであり、視空間がそもそも計測によって成り立ってはいないからである。また、皮膚の触覚的空間も、計測的空間とは大きな差異を示す。たとえば、舌先に、コンパスの二本の先端を触れさせ、距離を感じ取させる場合と、背中で同じことをやる場合とは、認識の細かさは舌のほうが耐えるであろう。また、空間的な感覚が舌と背中ではまるで違うことが証明されている。身体表面全体の皮膚の感度を調べてみれば、かなり粗いマイク状の、穴の開いた身体の空間性が取り出されるはずである。視空間と同様、触空間も異質なものであり、それは聴覚や嗅覚にも当てはまる。こうした生活空間は、「上記」「前後」「左右」の三つの「主要方位」からなり、それらはそれそれぞれの有機体に応じて不等価な仕方で区別されている。自分の頭上の底に巨大な岩がある場合と、その岩の前の地面に横たわっている場合とは、緊急さの度合いが異なる。たとえば物理的に同じ物体であっても、生体にとっての空間位置に応じて、異なる価値をつけた。マッハが分析しようとしたのは、こうした空間である。現在、マッハの著作である『感覚の分析および物理的なもの心理的なものとの関係』や『認識と誤謬』所収の諸論文を読み返してみると、マッハが多くの箇所で、生理学にとどまらない生態学的な分析を行おうとしていたことがよく分かる。

ただし、これまでの哲学研究におけるマッハ理解では、彼が生理学的空间を土台に、物理学的な力学理論に含まれる形而上学的な虚構性を暴露したことそのものに力点が置かれ、それが後の論理実証主義や科学相対主義、パラダイム論といった科学哲学論争の機縁となったことが強調されるか、もしくは、直接経験への回帰が、現象学の確立にとっての重要な役割を演じたことが積極的に取り上げられた。それと同時に他方、マッハの生理学的、心理学的感覚複合の解明方法が、単なる要素心理学や感覚要素主義の巻き込みに過ぎないとして批判されるか、もしくは現象学の側からは、彼が、志向性やイデアリテート的対象の理解に至らなかったために、観念論的で相対的な現象主義、もしくは本質を心的事実に基づける心理主義に陥っていると批判されてきた。こうしたマッハの積極的解釈や消極的解釈のどれもが、それなりの正当性はもっていると思われる。しかし、今更こうした解釈の正当性を競ってもそれが有意義ではないだろう。それよりも私たちの関心である「環境」についての問いにおいて、マッハが行ったことを検討してみる。

マッハは、生理学的空间が、幾何学的空间とあまりにも似ていないことに驚嘆を隠さないでいる。生理学的空间からは、たとえ可能であっても「位相幾何学（トポロジー）」しか構築しえないからである。 「便宜上、虚構される（二つの空間の）連続性は、一方の空間にとっても、他方の空間にとっても現実的な連続性である必要はない」という。では、そもそも彼が述べる感覚要素と空間世界はどのような関係にあるのか。たとえばマッハは、生理学的空间を構成する感覚要素について以下のように述べている。

「心理的なものと物理的なものの間にはどんな間隔も存在していない。内的なものと外的
なものという対立は存在しない。感覚ではない外的物に対応している感覚などというのも存在しない。ただ一種類の要素が存在するだけであり、内的なものと外的なものはこの要素から成立する。この要素が、そのつどの考察に応じて、内的なものになったり、外的なものになったりするだけである」xiii。

マッハの著作には、人間がどのようにして生理学的空間から幾何学的空間を形成していくのかという基礎づけの課題が差し出てくるため、先の空間の非連続性の主張とは異なり、ここでは心理的なものと物理的なものの連続性を認めるような記述となっている。つまり、マッハ同様、アヴェナリウスにおいても、そこから多くの科学的探究分野（物理学や心理学）が導出され、基礎づけられるような「(感覚) 経験の層」が特定されている。その限りでマッハが、通常の心理的な（観念論的）理解も、物理力学的な理解も、彼が考えている感覚経験とはずれ違っているとみなしていたのは確かである。では、そもそもこのずれ違いは何に由来しているのかxiv。マッハが、「環境」概念とかかわってくるのは、彼の独特な空間感覚の理解においてである。彼は、ジェームズと同様に、感覚それぞれ自体に質的な空間性が備わっていると考えている。つまり、物理的（計測的）でも、心的でない、空間性とともに発生する感覚が問題になっている。アインシュタインは、マッハの空間を、ニュートンやフレネル、そしてローレンツによって考えられたエーテルとは本質的に異なる「エーテル」であり、「媒質」であると明記しているxv。この空間感覚の特質を取り出してみると、以下のようになるxvi。

①空間感覚は、身体に対して方位づけられていないうち、無価値である。
②空間感覚は、それ自身が認識されなくなとも、身体の制御に役立っている。
③生物に固有な注意や関心、事物という目標に向けられており、空間感覚それ自身にではない。
④空間感覚は、個々の身体部位の薀動調整だけではなく、位置移動のさいにも制御的働きを行う。
⑤位置移動や方向判定の変化は、光学的刺激だけではなく、化学的・温熱的・聴覚的・重力的刺激によっても引き起こされる（盲目的の動物においてもそうである）。

生理学的空間は、こうした空間感覚の特質から成立しており、空間感覚は、事物の認識や判断に直接かかわるというよりも、むしろ身体が運動し、ひとつの行為を実現するさいの制御的な手段として捉えられている。そのさいの物体の認識が成立しているかどうかは、感覚複合のレベルを超えた問題になるため、それほど重要ではない。認識が成立しているかどうかが判定できない小動物や乳幼児でも、適切な移動を行い、対象物をつかむことができる。その意味でも、マッハの感覚経験にとって重要なのは、全体論か要素論かといった認識の心の機構ではない。つまりは、感覚要素主義かゲシュタルト的な構造理解かという態度をもってでもない。むしろ私たちの関心からいえば、マッハが行ったことは、生物学の改革において相即する「環境」の発見であり、現象学的な意味での行為空間の発見であるxvii。とすれば、マッハが「思惟経済の原理」により明らかにすべきと考えていた、
環境概念の前史—環境概念の具体像へのアプローチを経て（1）

感覚複合の力動的な関数的関係の解明とは、たとえ認識する意識がなくても成立可能、行為と環境の組織化の法則を取り出すことであったことが分かる。たとえばマッハは、橋の上に立って川の流れをしばらく見ていると、川が流れないのでなく、逆に川が静止し、橋が自分自身と周囲とともに動きだすように見えてくる現象を取り上げているlxviii。この現象を解明するために、マッハは自分で実験器具をつくり、実際に実験も行っている。それにより、川が川として注視されていた段階から、その注視がふと解除されるか、弛められるかすることで、川の流れが、視野の周囲の動きに変換されるとともに、身体の運動感覚が喰起されるようを見出しているlxix。もっともこの現象は、身体の運動感覚（キネステーゼ）が、対象の等速運動にではなく、「運動の加速度」や「前進速度の変化」に相応して誘導されるという仮説を検証するためのものであった。ここでも取り出されているのは、認識の機構というよりも、周囲の加速度の変化、すなわち「流動的な空間値」lixにおのずと相即してしまう身体感覚の法則であり、後のギブソンの生態学的視覚論に非常に近いものでもある。

とはいえ、こうした現象を解明するさいに、マッハはあまりにも早急に、「生物学的な目的適合性」と「刺激一反応」といった対応モデルで説明を与えてしまっていることも確かである。そうした場合、たとえば、カエルの足などに酸性の液体を伏せると反射運動が生じるが、これがすなわち「防御運動」という生物の自己保存にかかった行動として理解されることになる。「刺激一反応」がそのまま無か「生存目的にかかった反応運動」に組み込まれる形になっている。しかし、単なる反射運動が、生存上の目的や意味を当初より備えていたのかに関しては慎重になるべきであるし、マッハ自身が行った空間感覚の議論とは何の接点もないように思われる。おそらく、大脳皮質を介した中枢系の行為形成システムと、反射運動系の神経システムの区別が詳細になっていないという時代的な制約があったため、生物学的な合目的性が、生命の動きを固有なものとして洞察されているというよりも、外的な観察者の視点から半ば強制的に導入されているのであるlix。とはいえ、マッハの空間感覚の分析は、「刺激一反応」という生理的メカニズムにも、「目的一適応」という生物学的説明図式にも収まることがない、生命が行為することと相即する環境の存在に至るものにあと一歩だったと思われる。確かにマッハは、ギブソンほど環境特性を明確に強い説には至らず、かつ、フッサールのように体験野における意識の特質を首尾よく取り出せたわけではない。しかし、20世紀初頭というその時代に彼が行った試みは、それまでにない新たな科学的探求の領域を確かに特定していた。彼自身は、脳卒中を患うことで、四肢の麻痺や痙攣、不随意的な他動といった身体障害の経験をもち、さらに若いころから幻視や幻聴といった異状体験もしていた。そうした経験は、従来の物理力学的理論の延長上では決して出現しないし、扱われることもない。彼の感覚経験へのこだわりは、彼が生きた経験にも確かに裏づけられているのである。

これまでの概説で取り上げた思想家が、環境概念にかかわる唯一の前史を形成しているなどとはとても言えない。おそらく、予見できないほど多くの思想的・概念的変遷を経て、現在の環境理解にたどり着いたはずである。にもかかわらず、彼らが環境概念に含まれる多くの問題位相を浮き彫りにし、ときに刷新したことも確かだと思われる。たとえば、「流

177
体的な媒質としての環境」、「有機体と不可分な環境」、「生命に浸透する環境」、「行為に相即する環境」、これらはすべて環境の異なるモードであり、それぞれのモードに応じて探求の手続きの仕方も、その展開可能性も変化していく。さらには、「環境にかかわる」と述べるときの私たちの態度もそれに応じて変化せざるをえない。また、マッハ以降に出現してくる現象学や生態学的生理学の展開においても、これ以外の環境のモードが存在しているようにも思われる。そうしたモードの細分化および、それらに相応するデザインの構想は、まだまだこれまでの課題なのである。

注

xii E. Levinas:『全体性と無限』（熊野純彦訳・岩波文庫、2005）から環境の性質づけを列挙させていただいた。

xiii 独立行政法人国立環境研究所、地球環境研究センター発行の『IPCC 第四次評価報告書のポイントを読む』参照。

xiv この点についてはすでに拙著「持続可能性の実現とその課題—オルタナティブ・デザインとしての哲学」、「エコ・フィロソフィ」研究、Vol.1、2007で論じた。

xv ドイツ国内での太陽発電の取り組みについては、上掲拙著（2007）で扱った。

xvi 環境を数量的計測化のプロセスへ還元することによって生じる、人々の意識からの環境問題の疎遠化に関しては、以下を参照。太田信二：『環境概念を問う』（『現代哲学のトポス』所収、創風社、2000）。

xvii G.カンギレム：『生命の認識』（杉山吉弘訳、法政大学出版局、2002）における「細胞理論」および「生体とその環境」参照。

xviii Encyclopédie, ou, Dictionnaire raisonné des sciences, des arts et des métiers, par une société de gens de lettres, mis en ordre & publié par M. Diderot ; quant à la partie mathématique par M. D'Alembert : v. 1 - v. 5.-- Readex Microprint Corp., 1969. の項目「milieu」参照。

xix G.カンギレム上掲書（2002）、148頁以下参照。空気中を媒質が満たしているという考え方それ自体は、古くから存在している。アリストテレスは、光を光を出現させる媒質としてとらえており、デカルトは、宇宙空間がエーテルという媒質で満たされていると考えていた。吉仲正和：『力学はいかにして造られたか』（玉川大学出版部、1988）、E.セグレ：『古典物理学を造った人々』（久保亮五訳、みすず書房、1992）参照。

xx I.ニュートン：『自然哲学の数学的諸原理』（『世界の名著26ニュートン』所収、河辺六男訳、中央公論社、1971）、特にその第二編以降参照。また、近世光学の確立に関しては、田中一郎：『ニュートン光学の成立』（『ニュートン光学』、科学的名著6、朝日出版社、1981）参照。

xxi I.ニュートン：『光学』（島尾永康訳、岩波文庫、1983）、310頁以下参照。

xxii ニュートンのエーテル仮説についての歴史的変遷については、松山寿一：『ニュートンとカント』（見洋書房、1997）を参照。

xxiii I.ニュートン：上掲書（1971）参照。

xxiv O.コンド：『実証精神論』（『世界の名著36コンドスペンサー』所収、霧生和夫訳、中央公論社、1970）参照。

xxv O.コンド：『実証哲学講義』（Cours de philosophie positive, 40e leçon,Œuvres d’A. Comte, tome III, Paris, 1986 p.235, note 1）,第40講の脚注1参照。

xxvi T.A.アベル：『アカデミー論争 革命前後のバリーを揺るがせたナチュラリストたち』（西村顕治訳、時空出版、1990）、G.カンギレム：上掲書（2002）およびカンギレム：『科学史・科学哲学研究』（金森修監訳、法政大学出版局、1991）参照。

xxvii O.コンド：上掲書（1986）、第28講義参照。

xxviii O.コンド：『社会再組織に必要な科学的作業のプラン』、『世界の名著36』所収、霧生和夫訳、中央公論社、1970）参照。

xxix 清水幾太郎：『コンドとスペンサー』（上掲『世界の名著36』所収論文）参照。
環境概念の前史—環境内存在の現象的アプローチへ向けて（1）

小松美彦：「ペルナール生命運動の歴史的地勢—生物学史再構成のために」、『科学の名著 II-9』（朝日出版、1989）所収、参照。

ただしこの文献は、著者が科学の対象にはならない不可知物であることを強調しており、むしろ易にその力を導入し、説明を与えようとする科学者に対して終始批判的であった。ペルナールは、科学の結果的に発生する生気を論じたという。「外表」は、この論点を検討する生気論者たちのことをいう。ペルナール：『実験医学序説』（三浦信保訳、岩波文庫、1938）、101頁以下参照。

ただしこの文献は、著者が科学の対象に見える不可知物であることを強調しており、むしろ易にその力を導入し、説明を与えようとする科学者に対して終始批判的であった。ペルナールは、科学の結果的に発生する生気を論じたという。「外表」は、この論点を検討する生気論者たちのことをいう。ペルナール：『実験医学序説』（三浦信保訳、岩波文庫、1938）、101頁以下参照。

ただしこの文献は、著者が科学の対象にはならない不可知物であることを強調しており、むしろ易にその力を導入し、説明を与えようとする科学者に対して終始批判的であった。ペルナールは、科学の結果的に発生する生気を論じたという。「外表」は、この論点を検討する生気論者たちのことをいう。ペルナール：『実験医学序説』（三浦信保訳、岩波文庫、1938）、101頁以下参照。

ただしこの文献は、著者が科学の対象にはならない不可知物であることを強調しており、むしろ易にその力を導入し、説明を与えようとする科学者に対して終始批判的であった。ペルナールは、科学の結果的に発生する生気を論じたという。「外表」は、この論点を検討する生気論者たちのことをいう。ペルナール：『実験医学序説』（三浦信保訳、岩波文庫、1938）、101頁以下参照。
を展開する中で、発生的分析を行うことになるが、それにより再び、マッハの進化論的な発想に近づいていくこともなる。発生的分析で、欲求や衝動といった生物学的特性が主題化されるのもそのためである。したがって、マッハと現象学との関係で問題になるのは、「超越論性」をあくまでも固辞する現象学者の態度だけであり、今から見てみるとカッシーラーもフッサールも、マッハが行ったことに対して、あまり有効な批判を行っていたとは思われない。マッハとフッサールの関係については、谷徹：『意識の自然』（勤労書房、1998）、第一章、および木田元：『マッハとニーチェ』（新書館、2001）149頁以下を参照させていただいた。またフッサールの発生的現象学の詳細については、拙書：『衝動の現象学』（知泉書館、2007）を参照していただきたい。

lx E.マッハ：上掲書（1977）、15頁参照。
lxii E.マッハ：上掲書（1977）、同上参照。訳は適宜変更している。
lxiii E.マッハ：上掲書（1971）、253頁参照。
lxiv 別のすれ違い方として、レーニンによるマルクス主義的な唯物論の立場からのマッハやアヴェナリウスへの批判がある。ここで詳細は展開しないが、ひとつの立場からの批判がまったく接点がないほど典型的にすれ違っている。レーニン：『唯物論と経験批判論』（森宏一訳、新日本出版社、1999）。
lxv A. Einstein：Äther und relativitäts-theorie：rede gehalten am 5. mai 1920 an der Reichs-universität zu Leiden、参照。
lxvi ①は、E.マッハ：上掲書（1971）から、②〜⑤は上掲書（1977）の邦訳から抽出したものである。
lxvii 相即については、河本英夫：『メタフォーマー』（青土社、2002）、相即の章参照。
lxviii E.マッハ：上掲書（1971）、113頁以下参照。
lxix E.マッハ：上掲書（1971）、116頁以下参照。
lx E.マッハ：上掲書（1971）、113頁以下参照。
lx E.マッハ：上掲書（1977）、22頁参照。