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1. Introduction
The Markowitz mean-variance analysis that laid the foundations of modern portfolio theory
(MPT) shows how rational investors should construct their optimal portfolios under conditions of
uncertainty.  Why is his theory called mean-variance analysis? It is because only two
parameters, mean return and return variance (or standard deviation), are taken into account to
construct the optimal portfolio. Essentially, the aim of investors is to maximize the terminal
value of their investment. The mean-variance approach needs to justify the switch from
maximization of utility of wealth to utility consisting of two characteristics: mean return and
return variance. Theoretically, this can be done by making two hypotheses behind the theory: the
normal distribution hypothesis about return distributions and a quadratic utility function (see
Munechika [2002]).

Mean-variance analysis is clearly classified as a normative theory rather than a positive one,
while it approaches normative issues in a positive context. Sharpe [1963] summarizes the

process of Markowitz’s portfolio selection into three steps: (1) making probabilistic estimates of
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the future performances of asset returns, (2) analyzing those estimates to determine an efficient set
of portfolios, and (3) selecting from that set the portfolios best suited to the investor’s preferences.
Corresponding to these three steps, a portfolio optimization methodology is composed of three key
ingredients: a return forecast, an optimizer (i.e., a software program used in the computational
procedure) and a utility function. The first step of the process (i.e., the normal distribution
hypothesis) makes the Markowitz model into stochastic one.

The major concern of this article is to introduce a method of stochastic optimization by
applying Monte Carlo simulation to the second step and to examine its usefulness and its
limitations. In Section 2, I define portfolio return and risk by using matrix notation and point out
that a covariance matrix is a concise form for the information of volatilities and correlations of
assets and that is useful for constructing optimal portfolios. In Section 3, the mean-variance
optimization problem is mathematically formulated and its solution is provided by quadratic
programming. In Section 4, | implement the mean-variance optimization problem by using the
method of Monte Carlo simulation. In Section 5, the stylized facts about return distributions are

discussed in the context of stochastic optimization.

2. Matrix Approach to Portfolio Risk
I first formulate the problem of Markowitz's mean-variance optimization in a formal
mathematical context.  Suppose that a portfolio is composed of » risky assets. The return on

a portfolio is a weighted average of individual asset returns.

Rp:w]-R1+w2-R2+-'-+wn-Rn:ZWIR, (1)

i=1

where Zw, =1. The return on the i -th risky asset is R, and the portion of the 7 -th asset held
i=1

in the portfolio is w, .

Portfolio risk is defined as portfolio returns variance.
Var[Rp]: O'; @)

The variance of the portfolio return is the mixture of variability of returns for respective assets and

their co-movement, which can be expressed in a matrix format as in the following table.
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Asset 1 Asset 2 Asset n
Asset 1 252 ww,o w,w o
W, 0 1W201; 1WnO1n
2_2
Asset 2 WHoW,0 5, W50, WHoW, 05,
Asset n w wW,o w WwW,O 252
w1l n"2~n2 w,0,

The diagonal terms contain the variances of the individual assets and the off-diagonal terms
contain the covariances. The covariance between returns on the 7 th asset and the jth asset is
given by:

Cov(R,,R,))= EI(R,~ )R, - ,)]=0, ©)
where y; and u, are the mean returns of R, and R, respectively. The sign of the covariance will

indicate the direction of covariance R, and R, . Thus, the variance of a portfolio's return can be

calculated as the sum of all the cells of the table.

1 n 2 n n n
2 _ 2 2+ b 2 2
O, =W O] +W;0; +:-+W,0, + ww,0;+ WoW, 0y, + o+ W, W0,

i=l j=1 i=2 j=1 i=n j=1
i#] i#] i#]

n n n
= Z w,za,2 + Z Z WW,0; 4)
i=1

=1 j=1
variance term i#]
covariance term

In the double summation i# j of the covariance term, if /=, then the term would be
w,w,o, =w'a} since o, = E[(R, — u, YR, — p;)]=E(R, —u,)* =0, . This is the exactly the
variance term in the first summation. The portfolio risk can also be written as:
n n
2 e
O'F—ZZW,-WJO'U %)
=l j=1
It is convenient to present the portfolio return and risk in the form of matrix notation as
shown in the above explanation. The set of asset returns is expressed as a column vector
consisting of the random variable R,,---,R, :
n Rl
SR =r=| ©)
i=1 R

n

The set of portfolio weights is:



W

3w =wa| ™)
i=1

w

n

The return on a portfolio of equation (1) may be written as:
RPZZW,RIZ[W]RI o w,R]=[w, - w,] i |=w'r ¥
i=1

where w' is a transpose of w:
T
wli=[w, o ow,] ©)

The portfolio variance of equation (5) is expressed as:

22
w0y WW,01, . WW,0y,
n n 2 .2
2 _ _| W20 Wy 0, T WoW, 0,
Tp= WW,0,; = . . . : (10)
i=1 j=I
“en 2 2
WW Oy WWr0,5 W,0y
which can be broken down into the following matrix multiplications:
2 W,
o1 O = O 1
2
2 Oy O3 = Oy | W2 T
o‘pz[w, Wy oo w,,] : - :" S =W Vw (11)
- 2 w,
Oul On2 . Oy n

where V is a variance-covariance matrix with the variance terms on the diagonal and the
covariance terms on the off-diagonal. The variance-covariance matrix is also referred to as the
covariance matrix. The covariance matrix V¥ is always square and symmetric. In fact, the
covariance O, between risky asset / and risky asset j will be equal to the covariance between
risky asset j and risky asset i:

o,=0, (12)
Then, V can be arranged in the following square matrix:

2 2

Oy Op = Oy Oy Op Oy
2 2
O o e O, o o e O
V= ‘2] .2 :.n - 12 .2 ) 'Zn (13)
e 2 e 2
O-nl Jn2 O—n O-In O-Zn Un

Therefore, V is also symmetric.

The covariance matrix demonstrates how to reduce the portfolio risk through portfolio
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diversification. As the number of assets » increases, the total number of elements in the
covariance matrix becomes 71’ , the number of variance terms becomes #, and the number of
covariance terms thus becomes (n”—n). For example, a portfolio of 100 stocks has 100
variance terms and 9900 covariance terms. It is clear that the risk of a portfolio with many assets
is more dependent on the covariances between the individual assets than on the variances of the
individual assets. Therefore, the degree of co-movements between different pairs of stocks in a
portfolio is crucial to estimate and reduce the portfolio risk.

There is another typical measure of the degree of co-movement between two variables:
correlation. The magnitude of covariance, o, depends not only on the degree of co-movement
among the returns but also on their sizes. For instance, the covariance of monthly returns will
normally be greater than the covariance of any daily returns in the same market because monthly
returns are of a much greater order of magnitude than daily returns. The scales of measurement
will affect the magnitude of covariance. Therefore, a preferable measure to make comparisons is

correlation, which is the covariance divided by the product of the standard deviations:

O
- (14)

The correlation coefficient p,; has the same sign as the covariance, but its number always lies

between -1 and +1, which is unaffected by any scaling of the variables. We obtain the

correlation matrix by dividing o; by 0,0;:

1 py - py,
i s
e 1 o 09
pnl an 1

When the returns on the 7 -th asset and the j -th asset are independent random variables, they

are not correlated to each other. The covariance matrix becomes a diagonal matrix, that is, a

square matrix in which elements are all zero except the ones on the diagonal.

al 0 -« 0
2
2 I CH (16)
0 0 - o}

This means that the portfolio risk stems only from the variances of the individual assets. In

this case, the correlation matrix becomes an identity matrix, I, which is a scalar matrix with ones
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on the diagonal.

0 -~ 0
C=I=|., . . . (17)
00 1

It is important to note that the covariance matrix is a concise form for information on the two
key determinants of a portfolio risk, volatilities and correlations. Volatility is a measure of the
dispersion in a probability distribution of the asset returns. The most common measure of
dispersion is the standard deviation, o, of a random variable, that is, the square root of its
variance, 0',2 . Therefore, a succinct form for information on all the volatilities and correlations
in a portfolio can be obtained through simple mathematical operations on the elements of the

covariance matrix.

3. Mean-Variance Optimization Problem

The Markowitz mean-variance optimization problem can be solved by quadratic
programming. Quadratic programming is a mathematical programming problem that has a
quadratic objective function and linear constraints. The optimization problem that investors face
is equivalent to a constrained optimization problem minimizing the portfolio variance for a given
portfolio return (or maximizing the portfolio return for a given portfolio variance). An
optimization model consists of three major elements: decision variables, constraints, and an
objective.

In its simplest version, the model is written as follows:

Min: aizZZW,wJO'U (18)
i=1 j=1
subject to
E[R, )= wE[R]=T (19)
i=1
D w, =1 (20)
i=1
w,20 i=l,---,n 21

The objective of equation (18) is to minimize the risk of the portfolio, 0',2, and the decision
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variables are the percentage of the portfolio invested in each asset, w;,. The constraints are
represented in the three equations of (19) to (21). Equation (19) represents return target T that
we have to meet, and equation (20) shows 100% of budget invested. Equation (21) indicates that
no short sales are allowed since investors cannot invest a negative amount of w,. Moreover, the
analysis has been simplified by the assumption that no risk-free asset exists, that is, there are no
cases of riskless lending and borrowing. Varying the desired level of the expected return, T and
repeatedly solving the quadratic program identifies the minimum variance portfolio for each value
of 7'. These are the efficient portfolios that compose the efficient set. In general, the efficient
frontier can be traced by plotting the corresponding values of the objective function and T,
variance and return respectively.

Let us start with a simple numerical example where only three stocks are considered as
candidates for constructing portfolios. To implement a mean-variance optimization, we use the
data of annual returns for three randomly selected stocks (Itochu: I, Nisseki-Mitsubishi: NM,
Toyota: T) in the first section of the Tokyo Stock Exchange from 1987 to 2001 (estimates of the
inputs are presented in Table 1). During the 15 years, the stock of Toyota has the highest
expected return, 10.467% and the lowest standard deviation, 19.148% among the three stocks.
Clearly, Toyota dominates the other two stocks, with a lower risk and a higher return. At first
glance, it seems that even a risk averse investor would like to invest all his money in Toyota,
which means no portfolio diversification.

In a mean-variance optimization, the degree of co-movement of the returns for each stock
plays an important role in minimizing portfolio risk. In the covariance matrix in Table 1, the
entries off the main diagonal represent covariances between different pairs of stocks.
Algebraically, the model for this problem is given as:

Min:o? =0.077w] +0.039w3,, +0.037w; +2(0.040w,wy,, +0.034w, w; +0.015w,,, ;)
subject to :

0.02527w; —0.001wy,, +0.10467w, =T

w; +wy, +wp =1

Wi, Wi s Wy 20



Table 1 Data Set for the lllustrative Example

Period: 1987-2001 a ]
Itochu Nisseki- Toyota
<Annual> Mitsubishi
ER (%) 2,527 -0.100 10.467
SD (%) 27.661 19.780 19.148
Information ratio 0.0913 -0.0051 0.5466
(=ER/SD)
Covariance Matrix
I NM T
I 0.077
NM 0.040 0.039
T 0.034 0.015 0.037
Correlation Matrix
I NM T
I 1
NM 0.739 1
T 0.636 0.386 1

Source: Statistics are calculated on the basis of data drawn from Japan Securities Research
Institute, Kabushiki toshi shuekiritsu (Stock Return Statistics).

Using matrix notation, the objective function of the model is stated as:

0.077 0.040 0.034| w,
Min:o} =[w, wyy, wr]|0.040 0.039 0.015] wy, (22)
0.034 0.015 0.037| wy
The covariance matrix in equation (22) provides concise information about key determinants of
portfolio risk, statistics of variances and covariances.

Investment decision-making in the context of mean-variance analysis is essentially a problem
of an optimal trade-off between risk and returns. That is, an individual investor faces two
conflicting objectives simultaneously: minimizing risk and maximizing expected returns. One
way of dealing with these conflicting objectives is to solve the following problem.

n n n

Max:(1- DE[R, |- 262 =(1- DS wER]- 23> ww,o, (23)

i=1 i=1 j=1

subject to

iw, =1
i=1

w, 20

Here, for modeling the risk-return trade-off, the above objective function involves the
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parameter A, 0<A <1 which represents the investor's aversion to risk (A is called the risk
aversion value in Ragsdale [2001], p.375). The risk aversion value, A lies between 0 and 1.

When A=1, that indicates maximum risk aversion of the investors, the objective function seeks
to minimize the portfolio risk. This solution exhibits the smallest possible portfolio variance,
which is called the global minimum variance portfolio. Conversely, when A =0 , that indicates
a total disregard of risk, the objective function seeks to maximize the expected portfolio return.
This solution exhibits the maximum return portfolio. To demonstrate the relationship between
the minimum-variance portfolio with a given targeted return and the degree of the investor's
aversion to risk, varying the risk aversion value A from 0 to 1, and repeatedly solving the
objective function of equation (23) identifies the minimum variance portfolio for each value of 4.
Plotting the corresponding values of portfolio returns and risk respectively traces the efficient
frontier (Figure 1). Therefore, the efficient frontier represents the set of the trade-off between
risk and return faced by a risk-averse investor when constructing his portfolio. This type of
optimization clarifies the relationship of the optimal portfolio selected by an individual investor

and the degree of his aversion to risk.

Figure 1 Efficient Frontier
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Table 2  Efficient Set of Portfolio
Risk aversion Portfolio Portfolio Percentage Total
value( 4 ) return risk (o) Itochu Nisseki-Mitsubishi Toyota
0.0 10.47% 19.16% 0% 0% 100% 100%
0.1 10.47% 19.16% 0% 0% 100% 100%
0.2 10.47% 19.16% 0% 0% 100% 100%
03 10.47% 19.16% 0% 0% 100% 100%
0.4 10.47% 19.16% 0% 0% 100% 100%
0.5 10.47% 19.16% 0% 0% 100% 100%
0.6 10.47% 19.16% 0% 0% 100% 100%
0.7 10.47% 19.16% 0% 0% 100% 100%
0.8 8.46% 17.32% 0% 19.01% 80.99% 100%
0.9 6.79% 16.43% 0% 34.76% 65.24% 100%
1.0 5.46% 16.19% 0% 47.36% 52.64% 100%

Source: Author’s calculation.

including the ratio of each stock in the portfolio corresponding to the degree of aversion to risk (i.e.
selective risk aversion values from 0 to 1).
the solution by quadratic programming places 47.36% of the investor’s money in Nisseki-

Mitsubishi and 52.64% in Toyota.

In the global minimum variance portfolio (A =1 ),

the solution places 100% of the investor’s money in Toyota.

1 Composition of
| Efficient Portfolios
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Figure 2 Risk Aversion and Portfolio Choice

Source: Author's compilation.
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Table 2 shows the various efficient portfolios with each pair of portfolio return and risk

On the other hand, in the maximum return portfolio (4 =0 ),
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According to Table 2, the moderate risk averse investor allocates all his money to Toyota and
the very risk averse investor (A4>0.7) diversifies his money into Nisseki-Mitsubishi. The
higher the risk aversion value, the larger the fraction of Nisseki-Mitsubishi in the efficient
portfolios (Figure 2). Interestingly, Itochu is not included in the efficient portfolios, even though
Nisseki-Mitsubishi with a negative expected return is included in the efficient portfolios selected
by the very risk averse investors. This stems from the fact that the stock returns of Itochu were
relatively highly correlated to those of Nisseki-Mitsubishi and Toyota as shown in the correlation
matrix in Table 1. The correlation coefficient between Toyota and Nisseki-Mitsubishi is
approximately 0.386, much less than those between Toyota and Itochu, 0.636 and Itochu and
Nisseki-Mitsubishi, 0.739. It is note that the benefits of diversification are essentially due to the
combination between assets with low (or, if possible, negative) correlation. In this point, the
covariance matrix that concisely contains all necessary information about volatility and correlation
statistics plays a key role in forming efficient portfolios. To construct an efficient portfolio, it is
necessary to include inefficient assets because the risk of an individual asset should be of little
importance, but its contribution to the portfolio's risk as a whole should be taken into account for
the investor.

There are some risk-adjusted performance measures (RAPMs) which take account of both
risk and return characteristics for portfolio construction. The Sharp ratio and the information
ratio are two of the standard RAPMs for investment analysis. The most common RAPM is the
Sharp ratio, which is computed as the excess return over the risk-free rate, Rf divided by the

volatility of the asset (or portfolio). Mathematically,

(R,=R;)
g,

SR = (24)

q
where Rq and o, are an arbitrarily chosen portfolio return and risk. This is given graphically
as the slope of the dotted line from the point of Rf on the vertical axis in Figure 3. The Sharp
ratio is applied in the case of allowing unlimited riskless lending and borrowing as a risk-free rate.
If risk-free returns are assumed to be zero (or, no risk-free asset exists), the appropriate RAPM is

the information ratio given by the slope of the dotted line from the origin to the point Q,



Figure 3 Risk Adjusted Performance Measures
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IR = & (25)

These RAPMs indicate the measures of reward per unit of risk. How can these ratios help
us in constructing an optimal portfolio? According to the mean-variance optimization rule,
investors seek to maximize the portfolio return for a given portfolio risk. In either case, for a
given volatility (risk), o, , investors want the rate of return to be as great as possible, that is, they
need to choose the solid line with the greatest possible slope. In the case of the above numerical
example, the maximum information ratio is 0.5466, in which the portfolio is solely composed of
the stock of Toyota (100%).

Finally, in our simple numerical example, the stock of Toyota has a huge effect on the shape
of the efficient frontier and the construction of optimal portfolios, particularly for an investor who
is not very risk-averse. This is because Toyota has a much higher return than that of the other
two stocks. In the practical application of mean-variance optimization it is quite common that

optimal portfolio will be dominated by just a few assets with high-return, high-risk characteristics'.

! Alexander [2001] indicates the predominant effect of a few high-risk, high-return assets on the shape of the efficient
frontier among 35 assets. p.199.
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4. Stochastic Optimization by Monte Carlo Simulation

In the previous section, I explained the mathematical setting of mean-variance optimization
problem and provided a simple numerical example for depicting the efficient frontier in the
context of a trade-off between risk and return. The solution to the quadratic programming
problem is to find a set of values for the decision variables, w, that optimizes the associated
objective. All data (expected returns, volatility and correlation statistics) used in the model were
calculated from historical performances of the individual stock returns, that is, they are inputted as
constant variables. This makes the model deterministic. However, decision making in portfolio
analysis essentially involves ex ante returns (i.e., future performances) and uncertainty of these
returns has to be quantified in the optimization process. In this regard, ex ante (in the original
meaning of the "expected" and uncertain) returns can only be described probabilistically.

It is worthwhile to note that the method of optimization should be selected out of those

reflecting the original theoretical insight in the Markowitz mean-variance analysis. Markowitz

[1952] pointed out that "Our suggestion as to tentative 1, o,

; is to use the observed 4, o,

-
for some period of the past. [ believe that better methods, which take into account more
information, can be found. I believe that what is needed is essentially a probabilistic
reformulation of security analysis" (emphasis mine) in the last part of his seminal article.

Monte Carlo simulation is a powerful technique for analyzing models involving probabilistic
assumptions. In a stochastic optimization model, the simulation assumptions capture the
uncertainty of ex ante returns using probability distribution and forecasts of the objective will also
have some probability distributions of possible results for the model. The central idea behind
Monte Carlo simulation is based on repeated random sampling from a given probability
distribution that is assumed to model inputs to characterize the distributions of model outputs.
Crystal Ball, which I will employ as an optimizer in this section, is one of the popular programs of
Monte Carlo simulation. The process of Monte Carlo simulation using Crystal Ball is roughly
divided into three steps: formulating the spread-sheet model to solve the problem, identifying
probability distributions of input variables to generate random numbers, and implementing Monte
Carlo simulation to evaluate the outcome from the distribution of model output.

The spread-sheet model used in Crystal Ball is the same as the model of quadratic
programming in Section 3. The historical data used in the simulation is the same three stocks as
in Table 1. Probability distributions of input variables to generate random numbers are normal

distributions following the normal distribution hypothesis behind the Markowitz mean-variance



analysis.

variables, constraints and an objective.

Table 3 Summary of Mean-Variance Optimization

In a deterministic optimization, three major elements of the model were decision
A stochastic optimization model has additional elements:
the simulation assumptions about probability distributions used to generate model data and the

forecasts expressed as the frequency distributions of possible results for the model.

Deterministic Optimization

<Quadratic Programming>

Stochastic Optimization
<Monte Carlo Simulation>

90% Certainty Range
95% Certainty Range
99% Certainty Range
100% Certainty Range
Downside 10% Range
Downside 5% Range

Downside 1% Range

Normal Student-t
Global minimun variance portfolio
Return (Mean) 5.463% 5.448% 5.450%
Risk (SD) 16.186% 16.194% 16.194%
Composition
Itochu 0.00% 0.00% 0.00%
Nisseki-Mitsubishi 47.36% 47.49% 47.47%
Toyota 52.64% 52.51% 52.53%
Probability of a positive return * 62.00% 61.75%
Min Max Min Max
90% Certainty Range ¥ -20.892%  31.247% -23.271%  33.391%
95% Certainty Range * -26.878%  34.694% -30.273%  38.102%
99% Certainty Range * -36.100%  40.870% -41.445%  46.254%
100% Certainty Range L -37376%  51.700% -44.657%  57.890%
Downside 10% Range ¥ -14.533% -15.830%
Downside 5% Range * -20.892% -23.271%
Downside 1% Range * -29.786% -33.659%
IMaximum information ratio portfolio|
Information ratio 0.5466 0.5466 0.5466
Return (Mean) 10.467% 10.467% 10.467%
Risk (SD) 19.148% 19.148% 19.148%
Composition
Itochu 0.00% 0.00% 0.00%
Nisseki-Mitsubishi 0.00% 0.00% 0.00%
Toyota 100.00% 100.00% 100.00%
Probability of a positive return * 70.66% 70.21%
Min Max Min Max

-21.394%  41.651%)
-27264%  47.675%
-39.990%  57.788%
-45318%  82.160%
-14.133%
-21.394%

-35.260%

-23.690%  43.825%
-30.857%  51.133%
-48.210%  64.599%
-56.441%  106.960%
-15.355%
-23.690%
-41.415%

Source: Author's calculation.
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The results of the experiments are summarized in Table 3, and the outcomes of the simulation
are provided as frequency charts of model output (Figure 4). In contrast, deterministic
optimization for the global minimum variance portfolio (GMVP) provides only one value of
portfolio return 5.463% and risk 16.186%, since all data are inputted as constant variables. The
solution to the global minimum variance portfolio under stochastic optimization has a portfolio
risk of 16.194% (standard deviation) and a portfolio return of 5.448%, in which 0% of the
investor’s money is allocated to Itochu, 47.49% to Nisseki-Mitsubishi and 52.51% to Toyota. By
manipulating the end-point grabbers or by changing the range and certainty values in the boxes in
the frequency chart (Panel B of Figure 4), we can specify a certainty level or a probability interval
of realizing the global minimum variance portfolio return. For example, the probability of a
positive return is 62.00%. In case of the result of changing the certainty level to 100%, the range
centered about the mean is from -37.376% to 51.7% compared to that of the maximum
information ratio portfolio from -45.318% to 82.160% (Table 3). It is clear that the global
minimum variance portfolio has a smaller range of expected return compared to the maximum

information ratio portfolio (MIRP).

Figure 4  Forecast of Monte Carlo Simulation
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To sum up, stochastic optimization provides us with forecasts of our objectives

probabilistically. In addition, we can get some insight about alternative measures of financial



risk, such as value at risk (VaR) and the expected tail loss (ETL) from our probabilistic forecasts
of Monte Carlo simulation (for a more detailed explanation about VaR and ETL, see Dowd
[2002]). In particular, it might be possible to provide a much better approach to allow the return

distribution with non-normality to be less restricted.

5. Stylized Facts about Return Distributions

The result of Monte Carlo simulation depends crucially on the probability distributions that
will be assumed to generate the data of random sampling. If some unrealistic assumptions have
been made in the data generating process, the simulation experiments will not give a precise
answer to the problem. In the context of mean-variance optimization, the optimal asset
allocation obtained from a simulation will not be accurate if the data generating process assumed
normal distribution while the actual returns series is not normally distributed.

The normal distribution hypothesis behind mean-variance analysis was based on the fact that
asset returns are influenced by many different independent facts®. However, since the early 1960's
empirical research on returns distributions has almost universally found that such distributions are
characterized by the features of the fat tails and high peakedness -excess kurtosis- and are often
skewed. Those features are known as stylized facts about financial return series, especially high
frequency data.

Table 4 represents descriptive statistics of historical performances of annual and monthly
return series (Itochu, Nisseki-Mitsubishi, Toyota and market) for a fifty year period from 1955 to
2004 and a fifteen year period from 1987 to 2001. One of the features which stands out most
prominently from the last columns is that the kurtosis of the four series is much higher than the
normal value, 3. This reflects the fact that the tails of the distributions of these series are fatter
than the tails of the normal distribution. Put differently, large outlying (i.e. very small and very
large) observations occur with rather high-frequency.

Next, three individual stock return series have positive skewness. The skewness of the
normal distribution is zero because its distribution is symmetric. Positive skewness implies that
the right tail of the distribution is fatter than the left tail. That is, large positive returns tend to
occur more often than large negative ones. Positive skewness has an important impact on

portfolio choice because it means that these stocks have a larger probability of very large payoffs,

2 According to probability theory and statistics, any phenomenon made up of a large number of independent or weakly
dependent variables has a normal distribution. See Focardi & Fabozz [2004], p.194.
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Table 4 Descriptive Statistics of Stock Return Series

(%)
Mean Median Maximum  Minimum Std. Dev. Skewness Kurtosis
1955-2004: Annual
Itochu 17.628 10.700 240.100 -43.500 46.093 2,527 12.364
INisseki-Mitsubishi 15.994 7.300 144.800 -30.500 34982 1.374 5.478
[Toyota 23.254 19.200 110.600 -37.900 33.087 0.617 2.942
Market 14.776 15.950 72.100 -24.800 19.956 0.356 3.271
1955-2004: Monthly
lItochu 1.433 0.000 72.700 -38.100 11.017 1.412 9.220
INisseki-Mitsubishi 1.368 0.000 52.000 -28.900 10.214 1.026 6.330
[Toyota 1.891 1.200 46.800 -25.000 9.287 0.772 5.040
IMarket 0.909 0.800 17.500 -19.800 5.058 -0.130 3.934
1987-2001: Monthly
itochu 0.381 -0.800 60.000 -38.100 12.982 1.049 6.968
Nisseki-Mitsubishi 0.043 -0.950 36.800 -28.900 9.657 0.299 4.617
Toyota 0.778 0.500 43.100 -20.000 8.128 1.002 7.028
Market 0.022 -0.400 17.500 -19.800 6.037 0.092 3.534

Source: Calculated on the basis of data drawn from Japan Securities Research Institute, Kabushiki toshi shuekiritsu (Stock
Return Statistics).

thus, they should have a preference for positive skewness. The monthly market return series for
the period of 1955 to 2004 has only slightly negative skewness. It implies that large negative
returns tend to occur more often than large positive ones. It is clear that the distributions of all
stock return series listed in Table 4 diverge considerably from the normal distribution, have fatter
tails, are more highly peaked, and are often skewed. The use of a normal distribution assumed
for the data generation process in the simulation is likely to lead to a systematic underestimate of
the occurrences of both sides of extreme values of returns. This is because they are more likely
in practice than would arise under a normal distribution.

One approach to remedies for stylized facts, especially for the tail’s parts of return
distributions, is the replacement of the distribution assumed in the simulation from a normal
distribution by a Student t-distribution. A Student t-distribution is a symmetric and bell-shaped
distribution similar to a normal distribution, but with fatter tails and a smaller peak at the mean.
We have summarized the results of Monte Carlo simulation under the different assumed
distributions in Table 3 and Figure 5. The information demonstrates that the use of a normal
distribution under the simulations leads to a systematic underestimate of the tail’s parts of
forecasts about the global minimum variance portfolio(GMVP) and the maximum information
ratio portfolio(MIRP), as extremely large positive and negative returns are more likely in practice

than would arise under a normal distribution.



Figure 5 Forecast of Tail's Part
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An alternative approach to overcome stylized facts about returns distribution would be to use
bootstrapping. In Monte Carlo simulation, the data are generated completely artificially from the
assumed distribution.  On the other hand, bootstrapping does not assume some preset distribution
but uses the actual data themselves. However, Brooks [2002] points out that there are at least two
situations where the bootstrap will not work well. First, if there are outliers in the data, the
conclusions of the bootstrap may be affected. Second, use of the bootstrap implicitly assumes
that the data are independent of one another. If there were autocorrelation in the data, this would

obviously not hold.

6. Concluding Remarks and Future Direction of Research

In this article, we have considered the implementation of the mean-variance optimization in
portfolio analysis. The mean-variance analysis suggested by Markowitz is theoretically based on
the expected utility theory and the normal distribution hypothesis about return distributions. The
worth of the analysis rests on revealing normative rules for optimal portfolio choice by an
individual. The theory is relatively straightforward, however its implementation can get quite
complicated. Recently, remarkable progress has occurred in the area of risk management.
Breakthroughs in its implementation fall into two categories: an optimizer and a return forecast.

In order to get robust results, these issues are crucial and closely related to each other.
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I began with formulating the problem of mean-variance optimization in a formal
mathematical context and then demonstrated that a covariance matrix is a cornerstone of risk
reduction through portfolio diversification. Next, we implemented mean-variance optimization
by using the methods of Monte Carlo simulation, which is consistent with the original idea of
Markowitz’s approach in an aspect of probabilistic setting about return forecast. The result of
simulation relies mainly upon the assumed probability distribution to generate return data in the
model. Its robustness depends on whether the actual return distribution is fitting to the assumed
distribution under simulation. According to the historical performance of return series, the return
distributions are not normally distributed. To rectify the results of simulation to tail’s parts of
return distributions, I added to implement the simulation under the assumption of Student t-
distribution and pointed out the possibility of using the method of bootstrapping. These methods
are directed to improve the assumed distribution under simulation in an aspect of curve fitting to
actual return distributions. In other words, I attempt to fit an assumed distribution to historical
data unconditionally.

More fundamentally, practical problems with mean-variance optimization lie on the use of
return data. Three key ingredients in portfolio optimization are a return forecast, an optimizer
and a utility function. Although those are inseparable from each other, an accurate return
forecast is of paramount importance on data input in the optimization process. The covariance
matrix provides concise and precise information about volatilities and correlations as discussed in
Section 2. Volatility and correlation are parameters of the stochastic process that are used to
model the variation in asset prices. The estimation and forecasting is at the heart of mean-
variance optimization. In practice, they are not directly observable, unlike asset prices. They
can only be estimated in the context of a statistical model, and those estimates depend on the
choice of model applied to historical return series. Campbell, Lo and MacKinlay [1997] state
that nonlinear characteristics in economic behavior might be found in financial markets, for
instance, investor’s attitudes toward risk and expected return, strategic interactions among market
participants. The information stemming from nonlinear characteristics is incorporated into asset
prices, the dynamics of which are embodied in the stylized facts after all. The stylized facts
implying leptokurtosis and volatility clustering lead us to consider the introduction of nonlinear

models such as GARCH models and so on to describe the observed patterns in stock return series.
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